Untervektorraum/Lösungsraum zu linearem Gleichungssystem/Einführung/Textabschnitt

Aus Wikiversity


Definition  

Es sei ein Körper und ein -Vektorraum. Eine Teilmenge heißt Untervektorraum, wenn die folgenden Eigenschaften gelten.

  1. .
  2. Mit ist auch .
  3. Mit und ist auch .

Auf einem solchen Untervektorraum kann man die Addition und die skalare Multiplikation einschränken. Daher ist ein Untervektorraum selbst ein Vektorraum, siehe Aufgabe. Die einfachsten Untervektorräume in einem Vektorraum sind der Nullraum und der gesamte Vektorraum .



Lemma

Es sei ein Körper und

ein homogenes lineares Gleichungssystem über .

Dann ist die Menge aller Lösungen des Gleichungssystems ein Untervektorraum des (mit komponentenweiser Addition und Skalarmultiplikation).

Beweis

Siehe Aufgabe.


Man spricht daher auch vom Lösungsraum des Gleichungssystems. Insbesondere ist die Summe von zwei Lösungen eines linearen Gleichungssystems wieder eine Lösung. Die Lösungsmenge eines inhomogenen Gleichungssystems ist kein Vektorraum. Man kann aber zu einer Lösung eines inhomogenen Gleichungssystems eine Lösung des zugehörigen homogenen Gleichungssystems hinzuaddieren und erhält wieder eine Lösung des inhomogenen Gleichungssystems.


Beispiel  

Wir knüpfen an die homogene Version von Beispiel an, d.h. wir betrachten das homogene lineare Gleichungssystem

über . Aufgrund von Fakt ist die Lösungsmenge ein Untervektorraum von . Wir haben ihn in Beispiel explizit als

beschrieben, woraus ebenfalls erkennbar ist, dass dieser Lösungsraum ein Vektorraum ist. In dieser Schreibweise wird klar, dass in Bijektion zu steht, und zwar respektiert diese Bijektion sowohl die Addition als auch die Skalarmultiplikation (die Lösungsmenge des inhomogenen Systems steht ebenfalls in Bijektion zu , allerdings gibt es keine sinnvolle Addition und Skalarmultiplikation auf ). Allerdings hängt diese Bijektion wesentlich von den gewählten „Basislösungen“ und ab, die von der gewählten Eliminationsreihenfolge abhängen. Es gibt für andere gleichberechtigte Basislösungen.


An diesem Beispiel kann man sich Folgendes klar machen: Der Lösungsraum eines linearen Gleichungssystems über ist „in natürlicher Weise“, d.h. unabhängig von jeder Auswahl, ein Untervektorraum des (wenn die Anzahl der Variablen ist). Der Lösungsraum kann auch stets in eine „lineare Bijektion“ (eine „Isomorphie“) mit einem () gebracht werden, doch gibt es dafür keine natürliche Wahl. Dies ist einer der Hauptgründe dafür, mit dem abstrakten Vektorraumbegriff zu arbeiten anstatt lediglich mit dem .