Vektorraum/Basis/Einführung/Textabschnitt

Aus Wikiversity


Definition  

Es sei ein Körper und ein -Vektorraum. Dann heißt ein linear unabhängiges Erzeugendensystem , , von eine Basis von .


Beispiel  

Die Standardvektoren im bilden eine Basis. Die lineare Unabhängigkeit wurde in Beispiel gezeigt. Um zu zeigen, dass auch ein Erzeugendensystem vorliegt, sei

ein beliebiger Vektor. Dann ist aber direkt

Also liegt eine Basis vor, die man die Standardbasis des nennt.




Satz  

Es sei ein Körper und ein -Vektorraum. Es sei eine Familie von Vektoren. Dann sind folgende Aussagen äquivalent.

  1. Die Familie ist eine Basis von .
  2. Die Familie ist ein minimales Erzeugendensystem, d.h. sobald man einen Vektor weglässt, liegt kein Erzeugendensystem mehr vor.
  3. Für jeden Vektor gibt es genau eine Darstellung
  4. Die Familie ist maximal linear unabhängig, d.h. sobald man irgendeinen Vektor dazunimmt, ist die Familie nicht mehr linear unabhängig.

Beweis  


Bemerkung  

Es sei eine Basis eines -Vektorraums gegeben. Aufgrund von Fakt  (3) bedeutet dies, dass es für jeden Vektor eine eindeutig bestimmte Darstellung (eine Linearkombination)

gibt. Die dabei eindeutig bestimmten Elemente (Skalare) heißen die Koordinaten von bezüglich der gegebenen Basis. Bei einer gegebenen Basis entsprechen sich also die Vektoren aus und die Koordinatentupel . Man sagt, dass eine Basis ein lineares Koordinatensystem festlegt.[1]




Satz  

Es sei ein Körper und ein -Vektorraum mit einem endlichen Erzeugendensystem.

Dann besitzt eine endliche Basis.

Beweis  

Es sei , , ein Erzeugendensystem von mit einer endlichen Indexmenge . Wir wollen mit der Charakterisierung aus Fakt  (2) argumentieren. Falls die Familie schon minimal ist, so liegt eine Basis vor. Andernfalls gibt es ein derart, dass die um reduzierte Familie, also , , ebenfalls ein Erzeugendensystem ist. In diesem Fall kann man mit der kleineren Indexmenge weiterargumentieren.
Mit diesem Verfahren gelangt man letztlich zu einer Teilmenge derart, dass , , ein minimales Erzeugendensystem, also eine Basis ist.

  1. Lineare Koordinaten vermitteln also eine bijektive Beziehung zwischen Punkten und Zahlentupeln. Aufgrund der Linearität ist eine solche Bijektion mit der Addition und der Skalarmultiplikation verträglich. In vielen anderen Kontexten spielen auch nichtlineare (oder krummlinige) Koordinaten eine wichtige Rolle. Auch diese setzen Raumpunkte mit Zahlentupeln in eine bijektive Verbindung. Wichtige nichtlineare Koordinaten sind u.A. Polarkoordinaten, Zylinderkoordinaten und Kugelkoordinaten. Mathematische Probleme können häufig durch eine geeignete Wahl von Koordinaten vereinfacht werden, beispielsweise bei Volumenberechnungen.