Algebraische Körpererweiterung/Einführung/Textabschnitt

Aus Wikiversity


Satz  

Es sei eine Körpererweiterung und sei ein Element. Dann sind folgende Aussagen äquivalent.

  1. ist algebraisch über .
  2. Es gibt ein normiertes Polynom  mit .
  3. Es besteht eine lineare Abhängigkeit zwischen den Potenzen
  4. Die von über erzeugte -Algebra hat endliche -Dimension.
  5. liegt in einer endlichdimensionalen -Algebra .

Beweis  

. Das ist trivial, da man ein von verschiedenes Polynom stets normieren kann, indem man durch den Leitkoeffizienten dividiert. . Nach (2) gibt es ein Polynom , , mit . Sei . Dann ist

eine lineare Abhängigkeit zwischen den Potenzen. . Umgekehrt bedeutet die lineare Abhängigkeit, dass es Elemente gibt, die nicht alle sind mit . Dies ist aber die Einsetzung für das Polynom , und dieses ist nicht das Nullpolynom. . Sei

ein normiertes Polynom mit , also mit

Dann kann man umstellen

D.h. kann man durch kleinere Potenzen ausdrücken. Durch Multiplikation dieser Gleichung mit weiteren Potenzen von ergibt sich, dass man auch die höheren Potenzen durch die Potenzen , , ausdrücken kann. . Das ist trivial. . Wenn in einer endlichdimensionalen Algebra liegt, so liegen darin auch alle Potenzen von . Da es in einem endlichdimensionalen Vektorraum keine unendliche Folge von linear unabhängigen Elementen geben kann, müssen diese Potenzen linear abhängig sein.



Satz  

Sei eine Körpererweiterung und sei ein algebraisches Element.

Dann ist die von erzeugte -Algebra ein Körper.

Beweis  

Nach Fakt ist eine endlichdimensionale -Algebra. Wir müssen zeigen, dass ein Körper ist. Es sei dazu ein von verschiedenes Element. Damit ist auch , so dass wieder eine endlichdimensionale Algebra ist. Daher ist, wiederum nach Fakt, das Element algebraisch über und es gibt ein Polynom , , mit . Wir ziehen aus diesem Polynom die höchste Potenz von heraus und schreiben , wobei der konstante Term von von verschieden sei. Die Ersetzung von durch ergibt

Da ist und sich alles im Körper abspielt, folgt . Wir können durch den konstanten Term von dividieren und erhalten die Gleichung

Umstellen ergibt

Das heißt, dass das Inverse zu sich als Polynom in schreiben lässt und daher zu und erst recht zu gehört.



Korollar  

Sei eine Körpererweiterung und sei ein algebraisches Element.

Dann stimmen die von über erzeugte Unteralgebra und der von über erzeugte Unterkörper überein.

Es gilt also .

Beweis  

Die Inklusion gilt immer, und nach Voraussetzung ist der Unterring aufgrund von Fakt schon ein Körper.


Bemerkung  

Es sei ein Körper, ein irreduzibles Polynom und die zugehörige Körpererweiterung. Dann kann man zu , , (mit ) auf folgende Art das Inverse bestimmen. Es sind und teilerfremde Polynome in und daher gibt es nach Fakt und Fakt eine Darstellung der , die man mit Hilfe des euklidischen Algorithmus finden kann. Wenn ist, so ist die Restklasse von , also , das Inverse zu .