Zum Inhalt springen

Hauptidealbereich/Faktoriell/Z/Textabschnitt

Aus Wikiversity


Es sei ein Hauptidealbereich. Dann ist ein Element genau dann prim,

wenn es irreduzibel ist.

Ein Primelement in einem Integritätsbereich ist nach Fakt stets irreduzibel. Es sei also umgekehrt irreduzibel, und nehmen wir an, dass das Produkt teilt, sagen wir . Nehmen wir an, dass kein Vielfaches von ist. Dann sind aber und teilerfremd, da eine echte Inklusionskette der Irreduzibilität von widerspricht. Damit teilt nach dem Lemma von Euklid den anderen Faktor .



In einem Hauptidealbereich lässt sich jede Nichteinheit als ein Produkt von irreduziblen Elementen darstellen.

Angenommen, jede Zerlegung enthalte nicht irreduzible Elemente. Dann gibt es in jedem solchen Produkt einen Faktor, der ebenfalls keine Zerlegung in irreduzible Faktoren besitzt. Wir erhalten also eine unendliche Kette , wobei ein nicht-trivialer Teiler von ist. Somit haben wir eine echt aufsteigende Idealkette

Die Vereinigung dieser Ideale ist aber nach Aufgabe ebenfalls ein Ideal und nach Voraussetzung ein Hauptideal. Dies ist ein Widerspruch.



In einem Hauptidealbereich lässt sich jede Nichteinheit darstellen als Produkt von Primelementen. Diese Darstellung ist eindeutig bis auf Reihenfolge und Assoziiertheit. Wählt man aus jeder Assoziiertheitsklasse von Primelementen einen festen Repräsentanten , so gibt es eine bis auf die Reihenfolge eindeutige Darstellung , wobei eine Einheit ist und die Repräsentanten sind.

Die erste Aussage folgt direkt aus Fakt und Fakt.

Die behauptete Eindeutigkeit bis auf Umordnung bedeutet, dass wenn

zwei Primfaktorzerlegungen sind, dass dann ist und es eine Permutation auf gibt derart, dass und assoziiert sind für alle . Wir beweisen diese Aussage durch Induktion über . Es sei zuerst (das sei zugelassen). Dann steht links eine Einheit, also muss auch rechts eine Einheit stehen, was bedeutet.

Es sei also und die Aussage sei für alle kleineren bewiesen. Die Gleichung bedeutet insbesondere, dass das Produkt rechts teilt. Da prim ist, muss nach dem Lemma von Euklid einen der Faktoren rechts teilen. Nach Umordnung kann man annehmen, dass von geteilt wird. Da ebenfalls prim ist, sind und assoziiert. Also ist

mit einer Einheit und man kann die Gleichung nach kürzen und erhält

Die Induktionsvoraussetzung liefert dann und dass jedes zu einem assoziiert ist.


Diesen Satz kann man auch so ausdrücken, dass Hauptidealbereiche faktoriell sind im Sinne der folgenden Definition. Für solche Bereiche gilt ganz allgemein, dass die Primfaktorzerlegung eindeutig ist.


Ein Integritätsbereich heißt faktorieller Bereich, wenn die beiden folgenden Eigenschaften erfüllt sind.

  1. Jedes irreduzible Element in ist prim.
  2. Jedes Element , , ist ein Produkt aus irreduziblen Elementen.



Jede positive natürliche Zahl lässt sich eindeutig als Produkt von Primzahlen darstellen.

Dies folgt sofort aus Fakt.



Es sei ein Hauptidealbereich und seien und zwei Elemente mit Primfaktorzerlegungen

(wobei die Exponenten auch sein können und Einheiten sind). Dann gilt genau dann, wenn ist für alle Exponenten .

Wenn die Exponentenbedingung erfüllt ist, so ist und man kann

schreiben, was die Teilbarkeit bedeutet. Die Umkehrung folgt aus der Eindeutigkeit der Primfaktorzerlegung in Hauptidealbereichen (siehe Fakt).



Wir betrachten den Ring , der aus allen komplexen Zahlen der Form

besteht und ein Unterring des Ringes der Eisensteinzahlen ist. Letzterer Ring ist nach Fakt euklidisch und ein Hauptidealbereich. Dagegen gilt in noch nicht einmal die eindeutige Primfaktorzerlegung, es ist nämlich

und in beiden Zerlegungen sind die Faktoren irreduzibel, da es in (und im Eisensteinring) keine Elemente mit Betragsquadrat . Im Ring der Eisensteinzahlen sind wegen

die Faktoren zueinander assoziiert, aber nicht in , da es dort die Einheit nicht gibt. Das Ideal

ist in kein Hauptideal.