Invariantenringe/Algebra/Untergruppen/Textabschnitt
Es sei eine Operation einer Gruppe auf einem kommutativen Ring durch Ringautomorphismen. Sei eine Untergruppe. Dann gelten folgende Aussagen.
- .
- Sind
und
Untergruppen in mit
,
so ist
- Ist ein
Normalteiler
in , so operiert die
Restklassengruppe
auf durch
Dabei ist
(1) ist klar.
(2). Die Voraussetzung bedeutet, dass man
mit gewissen oder schreiben kann.
Die Inklusion ist nach (1) klar. Die Inklusion ist wegen
klar.
(3). Die Operation ist zunächst wohldefiniert, d.h. unabhängig vom Repräsentanten. Es seien dazu gegeben mit . Dann ist
Wegen der Normalteilereigenschaft gibt es für und ein mit . Für ist
und somit gehört ebenfalls zu . Wir haben also eine Abbildung
Diese Abbildung ist in der Tat eine Gruppenoperation. Das neutrale Element wirkt identisch und die Assoziativität ergibt sich aus
Es liegt also eine Operation von auf vor, und da die Elemente identisch wirken, induziert dies eine Operation von auf . Bei den Abbildungen handelt es sich um Ringautomorphismen, da es sich um Einschränkungen von Ringautomorphismen auf handelt, wobei sich die Surjektivität aus der Existenz von ergibt.
Wir kommen zur Gleichheit
Zum Beweis der Inklusion sei . Dann ist insbesondere . Wegen
ist auch - invariant. Zum Beweis der Inklusion sei
.
Doch dann ist für wiederum
.
Es sei
eine Operation einer Gruppe auf einem kommutativen Ring durch Ringautomorphismen. Es seien konjugierte Untergruppen.
Dann sind die Invariantenringe und in natürlicher Weise isomorph.
Die beiden Untergruppen seien vermöge zueinander konjugiert, d.h. die Abbildung
sei ein Gruppenisomorphismus. Wir betrachten den zu gehörenden Ringautomorphismus
Für und mit ist
also liegt das Bild in . Da man die Rollen von und vertauschen kann, liegt ein Isomorphismus vor.