Zum Inhalt springen

Kurs:Analysis (Osnabrück 2013-2015)/Teil I/Vorlesung 13/latex

Aus Wikiversity

\setcounter{section}{13}






\zwischenueberschrift{Der Zwischenwertsatz}

Wir interessieren uns dafür, was unter einer stetigen Abbildung \maabb {f} {\R} {\R } {} mit einem Intervall passiert. Der Zwischenwertsatz besagt, dass das Bild wieder ein Intervall ist.




\bild{ \begin{center}
\includegraphics[width=5.5cm]{\bildeinlesung {Intermediatevaluetheorem.svg} }
\end{center}
\bildtext {} }

\bildlizenz { Intermediatevaluetheorem.svg } {Enoch Lau} {Kpengboy} {Commons} {CC-by-sa 3.0} {}





\inputfaktbeweis
{Reelle Analysis/Zwischenwertsatz/Fakt}
{Satz}
{}
{

\faktsituation {Es seien
\mavergleichskette
{\vergleichskette
{ a }
{ \leq }{ b }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} \definitionsverweis {reelle Zahlen}{}{} und sei \maabb {f} {[a,b]} { \R } {} eine \definitionsverweis {stetige Funktion}{}{.} Es sei
\mavergleichskette
{\vergleichskette
{ u }
{ \in }{ \R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} eine reelle Zahl zwischen \mathkor {} {f(a)} {und} {f(b)} {.}}
\faktfolgerung {Dann gibt es ein
\mavergleichskette
{\vergleichskette
{ c }
{ \in }{ [a,b] }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} mit
\mavergleichskette
{\vergleichskette
{f(c) }
{ = }{ u }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}}
\faktzusatz {}
\faktzusatz {}

}
{

Wir beschränken uns auf die Situation
\mavergleichskette
{\vergleichskette
{f(a) }
{ \leq }{u }
{ \leq }{f(b) }
{ }{ }
{ }{ }
} {}{}{} und zeigen die Existenz von einem solchen $c$ mit Hilfe einer Intervallhalbierung. Dazu setzt man \mathkor {} {a_0 \defeq a} {und} {b_0 \defeq b} {,} betrachtet die Intervallmitte
\mavergleichskette
{\vergleichskette
{ c_0 }
{ \defeq }{ { \frac{ a_0 + b_0 }{ 2 } } }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und berechnet
\mathdisp {f(c_0)} { . }
Bei
\mavergleichskette
{\vergleichskette
{ f { \left( c_0 \right) } }
{ \leq }{ u }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} setzt man
\mathdisp {a_1 \defeq c_0 \text{ und } b_1 \defeq b_0} { }
und bei
\mavergleichskette
{\vergleichskette
{ f { \left( c_0 \right) } }
{ > }{ u }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} setzt man
\mathdisp {a_1 \defeq a_0 \text{ und } b_1 \defeq c_0} { . }
In jedem Fall hat das neue Intervall
\mathl{[a_1,b_1]}{} die halbe Länge des Ausgangsintervalls und liegt in diesem. Da es wieder die Voraussetzung
\mavergleichskette
{\vergleichskette
{ f { \left( a_1 \right) } }
{ \leq }{ u }
{ \leq }{ f { \left( b_1 \right) } }
{ }{ }
{ }{ }
} {}{}{} erfüllt, können wir darauf das gleiche Verfahren anwenden und gelangen so rekursiv zu einer \definitionsverweis {Intervallschachtelung}{}{.} Sei $c$ die durch diese Intervallschachtelung gemäß Satz 7.3 definierte \definitionsverweis {reelle Zahl}{}{.} Für die unteren Intervallgrenzen gilt
\mavergleichskette
{\vergleichskette
{ f { \left( a_n \right) } }
{ \leq }{ u }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und das überträgt sich wegen der Stetigkeit nach dem Folgenkriterium auf den Grenzwert $c$, also
\mavergleichskette
{\vergleichskette
{ f { \left( c \right) } }
{ \leq }{ u }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Für die oberen Intervallgrenzen gilt
\mavergleichskette
{\vergleichskette
{ f { \left( b_n \right) } }
{ \geq }{ u }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und das überträgt sich ebenfalls auf $c$, also
\mavergleichskette
{\vergleichskette
{ f(c) }
{ \geq }{ u }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}  Also ist
\mavergleichskette
{\vergleichskette
{ f(c) }
{ = }{ u }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}

}


Die in diesem Beweis beschriebene Methode ist konstruktiv und kann zu einem expliziten Verfahren ausgebaut werden.





\inputfaktbeweis
{Reelle Analysis/Nullstellensatz/Fakt}
{Korollar}
{}
{

\faktsituation {Es seien
\mavergleichskette
{\vergleichskette
{ a }
{ \leq }{ b }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} \definitionsverweis {reelle Zahlen}{}{} und sei \maabb {f} {[a,b]} { \R } {} eine \definitionsverweis {stetige Funktion}{}{}}
\faktvoraussetzung {mit \mathkor {} {f(a) \leq 0} {und} {f(b) \geq 0} {.}}
\faktfolgerung {Dann gibt es ein
\mavergleichskette
{\vergleichskette
{x }
{ \in }{\R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} mit
\mavergleichskette
{\vergleichskette
{a }
{ \leq }{x }
{ \leq }{b }
{ }{ }
{ }{ }
} {}{}{} und mit
\mavergleichskette
{\vergleichskette
{f(x) }
{ = }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,}}
\faktzusatz {d.h. $f$ besitzt eine Nullstelle zwischen \mathkor {} {a} {und} {b} {.}}
\faktzusatz {}

}
{

Dies folgt direkt aus Satz 13.1.

}





\inputbeispiel{}
{

Die Abbildung \maabbeledisp {f} {\Q} {\Q } {x} {x^2-2 } {,} ist \definitionsverweis {stetig}{}{,} sie genügt aber nicht dem Zwischenwertsatz. Für
\mavergleichskette
{\vergleichskette
{x }
{ = }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist
\mavergleichskette
{\vergleichskette
{ f(0) }
{ = }{ -2 }
{ < }{ 0 }
{ }{ }
{ }{ }
} {}{}{} und für
\mavergleichskette
{\vergleichskette
{x }
{ = }{2 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist
\mavergleichskette
{\vergleichskette
{ f(2) }
{ = }{ 2 }
{ > }{ 0 }
{ }{ }
{ }{ }
} {}{}{,} es gibt aber kein
\mavergleichskette
{\vergleichskette
{x }
{ \in }{ \Q }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} mit
\mavergleichskette
{\vergleichskette
{f(x) }
{ = }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,} da dafür
\mavergleichskette
{\vergleichskette
{x^2 }
{ = }{2 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} sein muss, wofür es in $\Q$ keine Lösung gibt. Der Zwischenwertsatz funktioniert also nur für reelle Zahlen.


}

Mit der im Beweis des Zwischenwertsatzes verwendeten Intervallhalbierungsmethode kann man insbesondere auch Quadratwurzeln \anfuehrung{ausrechnen}{,} also Folgen angeben, die gegen die Quadratwurzel konvergieren. Die Konvergenzgeschwindigkeit beim babylonischen Wurzelziehen ist aber deutlich höher.





\inputfaktbeweis
{Zwischenwertsatz/Bild ist Intervall/Fakt}
{Korollar}
{}
{

\faktsituation {Es sei $I$ ein reelles Intervall und \maabb {f} {I} { \R } {} eine stetige Funktion.}
\faktfolgerung {Dann ist auch das Bild
\mathl{f(I)}{} ein Intervall.}
\faktzusatz {}
\faktzusatz {}

}
{

Sei
\mavergleichskette
{\vergleichskette
{J }
{ = }{f(I) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Aus dem Zwischenwertsatz folgt sofort, dass wenn
\mavergleichskette
{\vergleichskette
{y,z }
{ \in }{J }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} sind und
\mavergleichskette
{\vergleichskette
{u }
{ \in }{ \R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} mit
\mavergleichskette
{\vergleichskette
{y }
{ \leq }{u }
{ \leq }{z }
{ }{ }
{ }{ }
} {}{}{} gegeben ist, auch
\mavergleichskette
{\vergleichskette
{u }
{ \in }{J }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} sein muss. Nach Aufgabe 6.10 ist $J$ ein Intervall.

}







\zwischenueberschrift{Stetige bijektive Funktionen und ihre Umkehrfunktion}

Für eine bijektive stetige Funktion auf einem reellen Intervall ist die Umkehrabbildung wieder stetig. Dies ist keineswegs selbstverständlich.





\inputfaktbeweis
{Reelles abgeschlossenes Intervall/Streng wachsend/Umkehrfunktion/Stetig/Fakt}
{Satz}
{}
{

\faktsituation {Es sei
\mavergleichskette
{\vergleichskette
{I }
{ \subseteq }{\R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ein \definitionsverweis {Intervall}{}{} und \maabbdisp {f} {I} {\R } {} eine \definitionsverweis {stetige}{}{,} \definitionsverweis {streng wachsende}{}{} \definitionsverweis {Funktion}{}{.}}
\faktfolgerung {Dann ist das \definitionsverweis {Bild}{}{}
\mavergleichskettedisp
{\vergleichskette
{ J }
{ \defeq} { f(I) }
{ =} { { \left\{ f(x) \mid x \in I \right\} } }
{ } { }
{ } { }
} {}{}{} ebenfalls ein Intervall, und die \definitionsverweis {Umkehrabbildung}{}{} \maabbdisp {f^{-1}} {J} {I } {} ist ebenfalls stetig.}
\faktzusatz {}
\faktzusatz {}

}
{

\teilbeweis {}{}{}
{Dass das Bild wieder ein Intervall ist folgt aus Korollar 13.4.}
{} \teilbeweis {}{}{}
{Die Funktion $f$ ist \definitionsverweis {injektiv}{}{,} da sie streng wachsend ist und damit ist die Abbildung \maabbdisp {f} {I} {J } {} auf das Bild \definitionsverweis {bijektiv}{}{.}}
{} \teilbeweis {}{}{}
{Die Umkehrfunktion \maabbdisp {f^{-1}} {J} {I } {} ist ebenfalls streng wachsend.}
{} \teilbeweis {}{}{}
{Sei
\mavergleichskette
{\vergleichskette
{g }
{ \defeq }{ f^{-1} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und
\mavergleichskette
{\vergleichskette
{y }
{ \defeq }{ f(x) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} vorgegeben. \fallunterscheidungzwei {Es sei zunächst $y$ kein \definitionsverweis {Randpunkt}{}{} von $J$. Dann ist auch $x$ kein Randpunkt von $I$. Sei
\mavergleichskette
{\vergleichskette
{ \epsilon }
{ > }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} vorgegeben und ohne Einschränkung
\mavergleichskette
{\vergleichskette
{ [x- \epsilon, x+ \epsilon] }
{ \subseteq }{ I }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} angenommen. Dann ist
\mavergleichskettedisp
{\vergleichskette
{ \delta }
{ \defeq} { {\min { \left( y-f(x- \epsilon) , f(x + \epsilon)-y \right) } } }
{ >} { 0 }
{ } { }
{ } { }
} {}{}{} und für
\mavergleichskette
{\vergleichskette
{y' }
{ \in }{[ y- \delta, y + \delta ] }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} gilt wegen der Monotonie
\mavergleichskettedisp
{\vergleichskette
{ g(y') }
{ \in} { [g(y-\delta), g(y+ \delta)] }
{ \subseteq} { [x- \epsilon, x+ \epsilon] }
{ } { }
{ } { }
} {}{}{.} Also ist $g$ stetig in $y$.}
{Wenn $y$ ein Randpunkt von $J$ ist, so ist auch $x$ ein Randpunkt von $I$, sagen wir der rechte Randpunkt. Dann ist zu vorgegebenem
\mavergleichskette
{\vergleichskette
{ \epsilon }
{ > }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} wieder
\mavergleichskette
{\vergleichskette
{ [x- \epsilon, x] }
{ \subseteq }{ I }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und
\mavergleichskette
{\vergleichskette
{ \delta }
{ \defeq }{ y-f(x- \epsilon) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} erfüllt die geforderte Eigenschaft.}
}
{}

}







\zwischenueberschrift{Stetigkeit der Wurzeln}






\bild{ \begin{center}
\includegraphics[width=5.5cm]{\bildeinlesung {RacineNieme.svg} }
\end{center}
\bildtext {} }

\bildlizenz { RacineNieme.svg } {} {HB} {Commons} {CC-by-sa 3.0} {}





\inputfaktbeweis
{Reelle Zahlen/kte Wurzeln aus reellen Zahlen/Über Zwischenwertsatz/Fakt}
{Satz}
{}
{

\faktsituation {Es sei
\mavergleichskette
{\vergleichskette
{n }
{ \in }{ \N_+ }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}}
\faktvoraussetzung {Für $n$ ungerade ist}
\faktfolgerung {die Potenzfunktion \maabbeledisp {} {\R} {\R } {x} {x^n } {,} \definitionsverweis {stetig}{}{,} \definitionsverweis {streng wachsend}{}{,} \definitionsverweis {bijektiv}{}{} und die \definitionsverweis {Umkehrfunktion}{}{} \maabbeledisp {} {\R} {\R } {x} { x^{1/n} } {,} ist streng wachsend und stetig.}
\faktzusatz {Für $n$ gerade ist die Potenzfunktion \maabbeledisp {} {\R_{\geq 0} } {\R_{\geq 0} } {x} {x^n } {,} stetig, streng wachsend, bijektiv und die \definitionsverweis {Umkehrfunktion}{}{} \maabbeledisp {} {\R_{\geq 0}} {\R_{\geq 0} } {x} { x^{1/n} } {,} ist streng wachsend und stetig.}
\faktzusatz {}

}
{

Die Stetigkeit ergibt sich aus Korollar 12.7. Das strenge Wachstum für
\mavergleichskette
{\vergleichskette
{x }
{ \geq }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} folgt aus der allgemeinen binomischen Formel. Für ungerades $n$ folgt das strenge Wachstum für
\mavergleichskette
{\vergleichskette
{x }
{ < }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} aus der Beziehung
\mavergleichskette
{\vergleichskette
{x^n }
{ = }{ - (-x)^n }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und dem Verhalten im positiven Bereich. Daraus ergibt sich die Injektivität. Für
\mavergleichskette
{\vergleichskette
{x }
{ \geq }{1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist
\mavergleichskette
{\vergleichskette
{x^n }
{ \geq }{x }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,} woraus die Unbeschränktheit des Bildes nach oben folgt. Bei $n$ ungerade folgt ebenso die Unbeschränktheit des Bildes nach unten. Aufgrund des Zwischenwertsatzes ist das Bild daher \mathkor {} {\R} {bzw.} {\R_{\geq 0}} {.} Somit sind die angegebenen Potenzfunktionen surjektiv und die Umkehrfunktionen existieren. Die Stetigkeit der Umkehrfunktionen folgt aus Satz 13.5.

}







\zwischenueberschrift{Minima und Maxima}






\bild{ \begin{center}
\includegraphics[width=5.5cm]{\bildeinlesung {Extrema_example_it.svg} }
\end{center}
\bildtext {} }

\bildlizenz { Extrema example it.svg } {} {KSmrq} {Commons} {CC-by-sa 3.0} {}




\inputdefinition
{}
{

Es sei $M$ eine Menge und \maabbdisp {f} {M} {\R } {} eine \definitionsverweis {Funktion}{}{.} Man sagt, dass $f$ in einem Punkt
\mavergleichskette
{\vergleichskette
{x }
{ \in }{M }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} das \definitionswort {Maximum}{} annimmt, wenn
\mathdisp {f(x) \geq f(x') \text { für alle } x' \in M \text{ gilt}} { , }
und dass $f$ das \definitionswort {Minimum}{} annimmt, wenn
\mathdisp {f(x) \leq f(x') \text { für alle } x' \in M \text{ gilt}} { . }

}

Die gemeinsame Bezeichnung für ein Maximum oder ein Minimum ist \stichwort {Extremum} {.} In der vorstehenden Definition spricht man auch vom \stichwort {globalen Maximum} {,} da darin Bezug auf sämtliche Elemente der Definitionsmenge genommen wird. Interessiert man sich nur für das Verhalten in einer offenen, eventuell kleinen Umgebung, so gelangt man zum Begriff des \stichwort {lokalen Maximums} {.}




\inputdefinition
{}
{

Es sei
\mavergleichskette
{\vergleichskette
{D }
{ \subseteq }{\R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} eine Teilmenge und sei \maabbdisp {f} {D} {\R } {} eine \definitionsverweis {Funktion}{}{.} Man sagt, dass $f$ in einem Punkt
\mavergleichskette
{\vergleichskette
{x }
{ \in }{D }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ein \definitionswort {lokales Maximum}{} besitzt, wenn es ein
\mavergleichskette
{\vergleichskette
{ \epsilon }
{ > }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} derart gibt, dass für alle
\mavergleichskette
{\vergleichskette
{x' }
{ \in }{ D }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} mit
\mavergleichskette
{\vergleichskette
{ \betrag { x-x' } }
{ \leq }{ \epsilon }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} die Abschätzung
\mavergleichskettedisp
{\vergleichskette
{ f(x) }
{ \geq} { f(x') }
{ } { }
{ } { }
{ } { }
} {}{}{} gilt. Man sagt, dass $f$ in
\mavergleichskette
{\vergleichskette
{x }
{ \in }{D }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ein \definitionswort {lokales Minimum}{} besitzt, wenn es ein
\mavergleichskette
{\vergleichskette
{ \epsilon }
{ > }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} derart gibt, dass für alle
\mavergleichskette
{\vergleichskette
{x' }
{ \in }{ D }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} mit
\mavergleichskette
{\vergleichskette
{ \betrag { x-x' } }
{ \leq }{ \epsilon }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} die Abschätzung
\mavergleichskettedisp
{\vergleichskette
{ f(x) }
{ \leq} { f(x') }
{ } { }
{ } { }
{ } { }
} {}{}{} gilt.

}

Wenn
\mathl{f(x) > f(x')}{} für alle
\mathl{x' \neq x}{,} so spricht man von einem \stichwort {isolierten Maximum} {.} Mit der Differentialrechnung werden wir bald schlagkräftige Methoden kennenlernen, um Minima und Maxima zu bestimmen.





\inputfaktbeweis
{Stetige Funktion/Abgeschlossenes beschränktes Intervall/Maximum wird angenommen/Fakt}
{Satz}
{}
{

\faktsituation {Es sei
\mavergleichskette
{\vergleichskette
{ [a,b] }
{ \subseteq }{ \R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ein abgeschlossenes beschränktes \definitionsverweis {Intervall}{}{} und sei \maabbdisp {f} {[a,b]} {\R } {} eine \definitionsverweis {stetige Funktion}{}{.}}
\faktfolgerung {Dann gibt es ein
\mavergleichskette
{\vergleichskette
{x }
{ \in }{[a,b] }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} mit
\mathdisp {f(x) \geq f(x') \text{ für alle } x' \in [a,b]} { . }
}
\faktzusatz {D.h., dass die Funktion ihr Maximum \zusatzklammer {und ihr Minimum} {} {} annimmt.}
\faktzusatz {}

}
{

Nach dem Zwischenwertsatz wissen wir, dass das Bild
\mavergleichskette
{\vergleichskette
{J }
{ \defeq }{ f([a,b]) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ein Intervall ist. \teilbeweis {Wir zeigen zunächst, dass $J$ \zusatzklammer {nach oben und nach unten} {} {} beschränkt ist.\leerzeichen{}}{}{}
{ Wir nehmen dazu an, dass $J$ nicht nach oben beschränkt ist. Dann gibt es eine Folge
\mathl{{ \left( x_n \right) }_{n \in \N }}{} in $I$ mit
\mavergleichskette
{\vergleichskette
{ f(x_n) }
{ \geq }{ n }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Nach Satz 7.7 besitzt
\mathl{{ \left( x_n \right) }_{n \in \N }}{} eine konvergente Teilfolge. Da
\mathl{[a,b]}{} abgeschlossen ist, gehört der Grenzwert der Teilfolge zu
\mathl{[a,b]}{.} Wegen der Stetigkeit muss dann auch die Bildfolge konvergieren. Die Bildfolge ist aber unbeschränkt, sodass sie nach Lemma 5.8 nicht konvergieren kann, und sich ein Widerspruch ergibt.}
{}

\teilbeweis {}{}{}
{Es sei nun $y$ das Supremum von $J$, das es nach Satz 7.5 gibt. Es gibt nach Aufgabe ***** eine Folge
\mathl{{ \left( y_n \right) }_{n \in \N }}{} in $J$, die gegen das Supremum konvergiert. Nach Definition von $J$ gibt es eine Folge
\mathl{{ \left( x_n \right) }_{n \in \N }}{} mit
\mavergleichskette
{\vergleichskette
{ f(x_n) }
{ = }{ y_n }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Für diese Folge gibt es wieder nach Satz 7.7 eine konvergente Teilfolge. Es sei $x$ der Grenzwert dieser Teilfolge. Somit ist aufgrund der Stetigkeit
\mavergleichskette
{\vergleichskette
{ f(x) }
{ = }{ y }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und daher
\mavergleichskette
{\vergleichskette
{ y }
{ \in }{ J }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}}
{}

}





\inputfaktbeweis
{Stetige Funktion/Abgeschlossenes beschränktes Intervall/Bild ebenso/Fakt}
{Korollar}
{}
{

\faktsituation {Es sei
\mavergleichskette
{\vergleichskette
{ [a,b] }
{ \subseteq }{\R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ein abgeschlossenes beschränktes \definitionsverweis {Intervall}{}{} und sei \maabbdisp {f} {[a,b]} {\R } {} eine \definitionsverweis {stetige Funktion}{}{.}}
\faktfolgerung {Dann ist das Bild
\mathl{f([a,b])}{} ebenfalls ein beschränktes abgeschlossenes Intervall.}
\faktzusatz {}
\faktzusatz {}

}
{

Dies folgt aus dem Zwischenwertsatz und Satz 13.9.

}


Ein abgeschlossenes und beschränktes Intervall nennt man auch \stichwort {kompakt} {.}