Kurs:Elemente der Algebra (Osnabrück 2015)/Vorlesung 27/latex

Aus Wikiversity

\setcounter{section}{27}






\zwischenueberschrift{Das Delische Problem}






\bild{ \begin{center}
\includegraphics[width=5.5cm]{\bildeinlesung {Roman_Statue_of_Apollo.jpg} }
\end{center}
\bildtext {Die Bewohner der Insel Delos befragten während einer Pestepidemie 430 v. Chr. das Orakel von Delphi. Sie wurden aufgefordert, den würfelförmigen Altar des Apollon zu verdoppeln.} }

\bildlizenz { Roman Statue of Apollo.jpg } {} {Stuart Yeates} {flickr} {CC-by-sa-2.0} {}

Wir kommen zur ersten Konsequenz von unserer systematischen Untersuchung der konstruierbaren Zahlen auf die klassischen Konstruktionsprobleme.




\inputfaktbeweis
{Zirkel und Lineal/Würfelverdoppelung/Fakt}
{Korollar}
{}
{

\faktsituation {}
\faktfolgerung {Die Würfelverdopplung \definitionsverweis {mit Zirkel und Lineal}{}{} ist nicht möglich.}
\faktzusatz {}
\faktzusatz {}

}
{

Wir betrachten einen Würfel mit der Kantenlänge $1$ und dem Volumen $1$. Die Konstruktion eines Würfels mit dem doppelten Volumen würde bedeuten, dass man die neue Kantenlänge, also
\mathl{2^{1/3}}{} mit Zirkel und Lineal konstruieren könnte. Das \definitionsverweis {Minimalpolynom}{}{} von
\mathl{2^{1/3}}{} ist
\mathl{X^3-2}{,} da dieses offenbar
\mathl{2^{1/3}}{} annulliert und nach Lemma 6.9 \definitionsverweis {irreduzibel}{}{} ist, da in $\Q$ keine dritte Wurzel aus $2$ existiert. Nach Korollar 26.7 ist
\mathl{2^{1/3}}{} nicht konstruierbar, da $3$ keine Zweierpotenz ist.

}







\zwischenueberschrift{Die Quadratur des Kreises}





\inputfaktbeweis
{Quadratur des Kreises/Unmöglichkeit/Fakt}
{Satz}
{}
{

\faktsituation {}
\faktfolgerung {Es ist nicht möglich, zu einem vorgegebenen Kreis ein flächengleiches Quadrat mit Zirkel und Lineal zu konstruieren.}
\faktzusatz {}
\faktzusatz {}

}
{

Wenn es ein Konstruktionsverfahren gäbe, so könnte man insbesondere den Einheitskreis mit dem Radius $1$ quadrieren, d.h. man könnte ein Quadrat mit der Seitenlänge $\sqrt{\pi}$ mit Zirkel und Lineal konstruieren. Nach Korollar 26.6 muss aber eine konstruierbare Zahl \definitionsverweis {algebraisch}{}{} sein. Nach dem Satz von Lindemann ist aber $\pi$ und damit auch $\sqrt{\pi}$ \definitionsverweis {transzendent}{}{.}

}


Es gibt natürlich einige geometrische Methoden die Zahl $\pi$ zu erhalten, z.B. die Abrollmethode und die Schwimmbadmethode.




\inputbeispiel{}
{

Die einfachste Art, die Zahl $\pi$ geometrisch zu konstruieren, ist die \stichwort {Abrollmethode} {,} bei der man einen Kreis mit Durchmesser $1$ einmal exakt abrollt. Die zurückgeführte Entfernung ist genau der Kreisumfang, also $\pi$.







\bild{ \begin{center}
\includegraphics[width=5.5cm]{\bildeinlesung {Pi-unrolled-720.gif} }
\end{center}
\bildtext {} }

\bildlizenz { Pi-unrolled-720.gif } {John Reid} {MGTom} {Commons} {CC-by-sa 3.0} {}


}




\inputbeispiel{}
{

Man kann die Zahl $\pi$ auch mit Hilfe von Schwimmbecken und einer idealen Flüssigkeit erhalten.


}






\zwischenueberschrift{Einheitswurzeln}


\inputdefinition
{}
{

Es sei $K$ ein \definitionsverweis {Körper}{}{} und
\mavergleichskette
{\vergleichskette
{ n }
{ \in }{ \N }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Dann heißen die Nullstellen des \definitionsverweis {Polynoms}{}{}
\mathdisp {X^n-1} { }
in $K$ die $n$-ten \definitionswort {Einheitswurzeln}{} in $K$.

}

Die $1$ ist für jedes $n$ eine $n$-te Einheitswurzel, und die $-1$ ist für jedes gerade $n$ eine $n$-te Einheitswurzel. Es gibt maximal $n$ $n$-te Einheitswurzel, da das Polynom
\mathl{X^n-1}{} maximal $n$ Nullstellen besitzt. Die Einheitswurzeln bilden also insbesondere eine endliche Untergruppe \zusatzklammer {mit $x^n=1$ und $y^n=1$ ist auch $(xy)^n=1$, usw.} {} {} der Einheitengruppe des Körpers. Nach einem Satz, den wir nicht bewiesen haben, ist diese Gruppe zyklisch mit einer Ordnung, die $n$ teilt.




\inputdefinition
{}
{

Eine $n$-te \definitionsverweis {Einheitswurzel}{}{} heißt \definitionswort {primitiv}{,} wenn sie die \definitionsverweis {Ordnung}{}{} $n$ besitzt.

}

Man beachte, dass ein Erzeuger der Gruppe der Einheitswurzeln nur dann primitiv heißt, wenn es $n$ verschiedene Einheitswurzeln gibt. Wenn $\zeta$ eine primitive $n$-te Einheitswurzel ist, so sind genau die
\mathbed {\zeta^i} {mit}
{i <n} {}
{} {} {} {} und $i$ teilerfremd zu $n$ die primitiven Einheitswurzeln. Insbesondere gibt es, wenn es überhaupt primitive Einheitswurzeln gibt, genau
\mathl{{\varphi (n)}}{} primitive Einheitswurzeln, wobei
\mathl{{\varphi (n)}}{} die \definitionsverweis {eulersche $\varphi$-Funktion}{}{} bezeichnet. Die komplexen Einheitswurzeln lassen sich einfach beschreiben.





\inputfaktbeweis
{Kreisteilungsgleichung über C/Explizite Beschreibung/Fakt}
{Lemma}
{}
{

\faktsituation {Es sei
\mavergleichskette
{\vergleichskette
{n }
{ \in }{\N_+ }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}}
\faktfolgerung {Die Nullstellen des Polynoms
\mathl{X^n-1}{} über ${\mathbb C}$ sind
\mathbeddisp {e^{2 \pi { \mathrm i} k / n} = \cos { \frac{ 2 \pi k }{ n } } + { \mathrm i} \sin { \frac{ 2 \pi k }{ n } }} {}
{k=0,1 , \ldots , n-1} {}
{} {} {} {.}}
\faktzusatz {In
\mathl{{\mathbb C}[X]}{} gilt die Faktorisierung
\mavergleichskettedisp
{\vergleichskette
{ X^n-1 }
{ =} { (X-1)(X- e^{2 \pi { \mathrm i} / n}) { \cdots }(X- e^{2 \pi { \mathrm i} (n-1) /n}) }
{ } { }
{ } { }
{ } { }
} {}{}{.}}
\faktzusatz {}

}
{

Der Beweis verwendet einige Grundtatsachen über die \definitionsverweis {komplexe Exponentialfunktion}{}{.} Es ist
\mavergleichskettedisp
{\vergleichskette
{ { \left( e^{ 2 \pi { \mathrm i} k /n} \right) }^n }
{ =} { e^{ 2 \pi { \mathrm i} k } }
{ =} { { \left( e^{ 2 \pi { \mathrm i} } \right) }^k }
{ =} {1^k }
{ =} {1 }
} {}{}{.} Die angegebenen komplexen Zahlen sind also wirklich Nullstellen des Polynoms
\mathl{X^n-1}{.} Diese Nullstellen sind alle untereinander verschieden, da aus
\mavergleichskettedisp
{\vergleichskette
{ e^{2 \pi { \mathrm i} k/n} }
{ =} { e^{2 \pi { \mathrm i} \ell/n} }
{ } { }
{ } { }
{ } { }
} {}{}{} mit
\mavergleichskette
{\vergleichskette
{0 }
{ \leq }{ k }
{ \leq }{ \ell }
{ \leq }{n-1 }
{ }{ }
} {}{}{} sofort durch betrachten des Quotienten
\mavergleichskette
{\vergleichskette
{ e^{2 \pi { \mathrm i} ( \ell -k )/n} }
{ = }{ 1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} folgt, und daraus
\mavergleichskettedisp
{\vergleichskette
{ \ell - k }
{ =} { 0 }
{ } { }
{ } { }
{ } { }
} {}{}{.} Es gibt also $n$ explizit angegebene Nullstellen und daher müssen dies alle Nullstellen des Polynoms sein. Die explizite Beschreibung in Koordinaten folgt aus der eulerschen Formel.

}







\bild{ \begin{center}
\includegraphics[width=5.5cm]{\bildeinlesung {3rd_roots_of_unity.svg} }
\end{center}
\bildtext {} }

\bildlizenz { 3rd roots of unity.svg } {} {Marek Schmidt und Nandhp} {Commons} {PD} {}






\bild{ \begin{center}
\includegraphics[width=5.5cm]{\bildeinlesung {8th-root-of-unity.jpg} }
\end{center}
\bildtext {} }

\bildlizenz { 8th-root-of-unity.jpg } {} {Marek Schmidt} {Commons} {PD} {}







\zwischenueberschrift{Kreisteilungskörper}




\inputdefinition
{}
{

Der $n$-te \definitionswort {Kreisteilungskörper}{} ist der \definitionsverweis {Zerfällungskörper}{}{} des Polynoms
\mathdisp {X^n-1} { }
über $\Q$.

}

Offenbar ist $1$ eine Nullstelle von
\mathl{X^n-1}{.} Daher kann man
\mathl{X^n-1}{} durch
\mathl{X-1}{} teilen und erhält, wie man schnell nachrechen kann,
\mavergleichskettedisp
{\vergleichskette
{X^n-1 }
{ =} {(X-1) (X^{n-1} +X^{n-2} + \cdots + X+1) }
{ } { }
{ } { }
{ } { }
} {}{}{.} Wegen
\mathl{1 \in \Q}{} ist daher der $n$-te Kreisteilungskörper auch der Zerfällungskörper von
\mathdisp {X^{n-1} +X^{n-2} + \cdots + X+1} { . }
Es gibt auch Kreisteilungskörper über anderen Körpern, da es ja stets Zerfällungskörper gibt. Wir beschränken uns aber auf die Kreisteilungskörper über $\Q$, die wir auch mit
\mathl{K_n}{} bezeichnen. Da
\mathl{X^n-1}{} in der oben explizit beschriebenen Weise über ${\mathbb C}$ in Linearfaktoren zerfällt, kann man $K_n$ als Unterkörper von ${\mathbb C}$ realisieren, und zwar ist $K_n$ der von allen $n$-ten Einheitswurzeln erzeugte Unterkörper von ${\mathbb C}$. Dieser wird sogar schon von einer einzigen primitiven Einheitswurzel erzeugt, wofür wir den folgenden Begriff einführen.




\inputdefinition
{}
{

Eine \definitionsverweis {Körpererweiterung}{}{}
\mavergleichskette
{\vergleichskette
{ K }
{ \subseteq }{ L }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,} heißt \definitionswort {einfach}{,} wenn es ein Element
\mathl{x \in L}{} mit
\mavergleichskettedisp
{\vergleichskette
{L }
{ =} {K (x) }
{ } { }
{ } { }
{ } { }
} {}{}{} gibt.

}





\inputfaktbeweis
{Kreisteilungskörper/Q/Erzeugt durch explizite Nullstellen/Fakt}
{Lemma}
{}
{

\faktsituation {Es sei
\mavergleichskette
{\vergleichskette
{n }
{ \in }{ \N_+ }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}}
\faktvoraussetzung {Dann wird der $n$-te \definitionsverweis {Kreisteilungskörper}{}{} über $\Q$}
\faktfolgerung {von
\mathl{e^{2 \pi { \mathrm i} /n}}{} erzeugt.}
\faktzusatz {Der $n$-te Kreisteilungskörper ist also
\mavergleichskettedisp
{\vergleichskette
{K_n }
{ =} {\Q { \left( e^{2 \pi { \mathrm i} /n} \right) } }
{ =} { \Q[e^{2 \pi { \mathrm i} /n}] }
{ } { }
{ } { }
} {}{}{.} Insbesondere ist jeder Kreisteilungskörper eine \definitionsverweis {einfache Körpererweiterung}{}{} von $\Q$}
\faktzusatz {}

}
{

Es sei $K_n$ der $n$-te Kreisteilungskörper über $\Q$. Wegen
\mavergleichskette
{\vergleichskette
{ { \left( e^{2 \pi { \mathrm i} /n} \right) }^n }
{ = }{1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist
\mathl{\Q[ e^{2 \pi { \mathrm i} /n}] \subseteq K_n}{.} Wegen
\mavergleichskette
{\vergleichskette
{{ \left( e^{2 \pi { \mathrm i} /n} \right) }^k }
{ = }{e^{2 \pi { \mathrm i} k/n} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} gehören auch alle anderen Einheitswurzeln zu
\mathl{\Q[ e^{2 \pi { \mathrm i} /n}]}{,} also ist
\mavergleichskette
{\vergleichskette
{ \Q[ e^{2 \pi { \mathrm i} /n}] }
{ = }{ K_n }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}

}


Statt
\mathl{e^{ \frac{2 \pi { \mathrm i} } { n } }}{} kann man auch jede andere $n$-te primitive Einheitswurzel als Erzeuger nehmen. Das Minimalpolynom zu einem Erzeuger von $K_n$ heißt das $n$-te \stichwort {Kreisteilungspolynom} {.} Der Grad des $n$-ten Kreisteilungspolynoms ist der Grad des $n$-ten Kreisteilungskörpers über $\Q$. Dieser Grad ist stets
\mathl{\varphi(n)}{,} was wir aber nicht beweisen werden.




\inputbeispiel{}
{

Wir bestimmen einige Kreisteilungskörper für kleine $n$. Bei
\mavergleichskette
{\vergleichskette
{n }
{ = }{1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} oder $2$ ist der Kreisteilungskörper gleich $\Q$. Bei
\mavergleichskette
{\vergleichskette
{n }
{ = }{3 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist
\mavergleichskettedisp
{\vergleichskette
{ X^3-1 }
{ =} { (X-1) { \left( X^2+X+1 \right) } }
{ } { }
{ } { }
{ } { }
} {}{}{} und der zweite Faktor zerfällt
\mavergleichskettedisp
{\vergleichskette
{ X^2+X+1 }
{ =} { { \left( X + { \frac{ 1 }{ 2 } } - { \mathrm i} { \frac{ \sqrt{3} }{ 2 } } \right) } { \left( X + { \frac{ 1 }{ 2 } } + { \mathrm i} { \frac{ \sqrt{3} }{ 2 } } \right) } }
{ } { }
{ } { }
{ } { }
} {}{}{.} Daher ist der dritte Kreisteilungskörper der von
\mavergleichskette
{\vergleichskette
{ \sqrt{-3} }
{ = }{ \sqrt{3} { \mathrm i} }
{ }{ }
{ }{ }
{ }{}
} {}{}{} erzeugte Körper, es ist also
\mavergleichskette
{\vergleichskette
{K_3 }
{ = }{ \Q[ \sqrt{-3}] }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} eine \definitionsverweis {quadratische Körpererweiterung}{}{} der rationalen Zahlen.

Bei
\mavergleichskette
{\vergleichskette
{n }
{ = }{4 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist natürlich
\mavergleichskettealign
{\vergleichskettealign
{ X^4-1 }
{ =} { { \left( X^2-1 \right) } { \left( X^2+1 \right) } }
{ =} { (X-1)(X+1) { \left( X^2+1 \right) } }
{ =} { (X-1)(X+1) (X- { \mathrm i} )(X+ { \mathrm i} ) }
{ } {}
} {} {}{.} Der vierte Kreisteilungskörper ist somit
\mavergleichskette
{\vergleichskette
{ \Q[ { \mathrm i} ] }
{ \cong }{ \Q[X]/(X^2+1) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,} also ebenfalls eine quadratische Körpererweiterung von $\Q$.


}

Der Beweis der folgenden wichtigen Aussage beruht auf Überlegungen, die wir nicht entwickelt haben.




\inputfaktbeweisnichtvorgefuehrt
{Kreisteilungskörper/Q/Prim/Kreisteilungspolynom/Fakt}
{Lemma}
{}
{

\faktsituation {Es sei $p$ eine \definitionsverweis {Primzahl}{}{.}}
\faktfolgerung {Dann ist der $p$-te \definitionsverweis {Kreisteilungskörper}{}{} gleich
\mathdisp {\Q[X]/ { \left( X^{ p-1 } + X^{ p - 2} + \cdots + X^1 + 1 \right) }} { . }
}
\faktzusatz {Insbesondere besitzt der $p$-te Kreisteilungskörper den \definitionsverweis {Grad}{}{}
\mathl{p-1}{} über $\Q$.}
\faktzusatz {}

}
{

Der $p$-te \definitionsverweis {Kreisteilungskörper}{}{} wird nach Lemma 27.10 von
\mathl{e^{2 \pi { \mathrm i} / p}}{} erzeugt, er ist also isomorph zu
\mathl{\Q[X]/(P)}{,} wobei $P$ das \definitionsverweis {Minimalpolynom}{}{} von
\mathl{e^{2 \pi { \mathrm i} / p}}{} bezeichnet. Als Einheitswurzel ist
\mathl{e^{2 \pi { \mathrm i} / p}}{} eine Nullstelle von
\mathl{X^p-1}{} und wegen
\mavergleichskette
{\vergleichskette
{e^{2 \pi { \mathrm i} / p} }
{ \neq }{ 1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist
\mathl{e^{2 \pi { \mathrm i} / p}}{} eine Nullstelle von
\mathl{X^{ p-1 } + X^{ p - 2} + \cdots + X^1 + 1}{.} Das Polynom
\mathl{X^{ p-1 } + X^{ p - 2} + \cdots + X^1 + 1}{} ist irreduzibel nach Aufgabe ***** und daher handelt es sich nach Lemma 23.2  (2) um das Minimalpolynom von
\mathl{e^{2 \pi { \mathrm i} / p}}{.}

}







\bild{ \begin{center}
\includegraphics[width=5.5cm]{\bildeinlesung {Kreis5Teilung.svg} }
\end{center}
\bildtext {} }

\bildlizenz { Kreis5Teilung.svg } {} {Exxu} {Commons} {CC-by-sa 3.0} {}




\inputbeispiel{}
{

Der fünfte Kreisteilungskörper wird von der komplexen Zahl
\mathl{e^{2 \pi { \mathrm i} /5}}{} erzeugt. Er hat aufgrund von Lemma 27.8 die Gestalt
\mavergleichskettedisp
{\vergleichskette
{ K_5 }
{ \cong} { \Q[X]/{ \left( X^4+X^3+X^2+X+1 \right) } }
{ } { }
{ } { }
{ } { }
} {}{}{,} wobei die Variable $X$ als
\mathl{e^{2 \pi { \mathrm i} /5}}{} \zusatzklammer {oder eine andere \definitionsverweis {primitive Einheitswurzel}{}{}} {} {} zu interpretieren ist. Sei
\mavergleichskette
{\vergleichskette
{x }
{ = }{e^{2 \pi { \mathrm i} /5} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und setze
\mavergleichskette
{\vergleichskette
{ v }
{ = }{ x-x^2-x^3+x^4 }
{ = }{ - { \left( 2x^3+2x^2+1 \right) } }
{ }{ }
{ }{ }
} {}{}{.} Aus Symmetriegründen muss dies eine reelle Zahl sein. Es ist
\mavergleichskettealign
{\vergleichskettealign
{v^2 }
{ =} { 4x^6+4x^4+1+8x^5+4x^3+4x^2 }
{ =} { 4x+4x^4+1+8+4x^3+4x^2 }
{ =} { 5+4 { \left( x^4+x^3+x^2+x+1 \right) } }
{ =} {5 }
} {} {}{.} Es ist also
\mavergleichskette
{\vergleichskette
{v }
{ = }{\sqrt{5} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} \zusatzklammer {die positive Wurzel} {} {} und somit haben wir eine Folge von quadratischen Körpererweiterungen
\mavergleichskettedisp
{\vergleichskette
{ \Q }
{ \subset} {\Q[\sqrt{5}] }
{ \subset} {K_5 }
{ } { }
{ } { }
} {}{}{.} Dies zeigt aufgrund von Satz 26.5, dass die fünften Einheitswurzeln konstruierbare Zahlen sind.


}


<< | Kurs:Elemente der Algebra (Osnabrück 2015) | >>

PDF-Version dieser Vorlesung

Arbeitsblatt zur Vorlesung (PDF)