Kurs:Grundkurs Mathematik (Osnabrück 2016-2017)/Teil I/Arbeitsblatt 22

Aus Wikiversity
Wechseln zu: Navigation, Suche



Die Pausenaufgabe

Aufgabe

Um die Erde wird entlang des Äquators ein Band gelegt. Das Band ist jedoch einen Meter zu lang, so dass es ringsherum gleichmäßig angehoben wird, um straff zu werden. Welche der folgenden Lebewesen können drunter durch laufen/schwimmen/fliegen/tanzen?

  1. Eine Amöbe.
  2. Eine Ameise.
  3. Eine Meise.
  4. Eine Flunder.
  5. Eine Boa constrictor.
  6. Ein Meerschweinchen.
  7. Eine Boa constrictor, die ein Meerschweinchen verschluckt hat.
  8. Ein sehr guter Limbotänzer.




Übungsaufgaben

Aufgabe

Interpretiere die folgenden physikalischen Gesetze als lineare Abbildungen von nach . Was sind die messbaren Größen, was ist der Proportionalitätsfaktor und wodurch ist dieser festgelegt?

  1. Die zurückgelegte Strecke ist Geschwindigkeit mal Zeit.
  2. Masse ist Volumen mal Dichte.
  3. Energie ist Masse mal Brennwert.
  4. Kraft ist Masse mal Beschleunigung.
  5. Energie ist Kraft mal Weg.
  6. Energie ist Leistung mal Zeit.
  7. Spannung ist Widerstand mal Stromstärke.
  8. Ladung ist Stromstärke mal Zeit.


Aufgabe

Eine Unze Gold kostet €.

a) Wie viel kosten sieben Unzen Gold?

b) Wie viel Gold bekommt man für €?


Aufgabe

Von einer Brotsorte kostet ein Laib mit Gramm €.

a) Wie viel kostet ein Laib mit Gramm?

b) Wie viel Brot bekommt man für €?


Aufgabe

Lucy Sonnenschein fährt mit ihrem Fahrrad 10 Meter pro Sekunde.

a) Wie viele Kilometer fährt sie pro Stunde?

b) Wie lange braucht sie für 100 Kilometer?


Aufgabe

Ein Huhn legt pro Tag ein Ei.

  1. Wie viele Eier legt ein Huhn in einer Woche?
  2. Wie viele Eier legen Hühner an einem Tag?
  3. Wie viele Eier legen Hühner in Tagen? Ist dies eine Dreisatzaufgabe?


Aufgabe

In einem Mikroliter menschlichen Blutes befinden sich ca. Erythrozyten. Wie viele Erythrozyten befinden sich in einem Kubikkilometer Blut?


Aufgabe

Fünf Spaziergänger laufen eine Strecke in 35 Minuten ab. Am nächsten Tag laufen 7 Spaziergänger die gleiche Strecke in gleichem Tempo. Wie lange brauchen sie?


Aufgabe *

Ein Zug ist Meter lang (ohne Lokomotive) und bewegt sich mit Stundenkilometer. Lucy Sonnenschein hat ihr Fahrrad mit in den Zug genommen und fährt mit einer Geschwindigkeit von Metern pro Sekunde von ganz hinten nach ganz vorne.

  1. Wie viele Sekunden benötigt Lucy für die gesamte Zuglänge?
  2. Welche Geschwindigkeit (in Meter pro Sekunde) hat Lucy bezogen auf die Umgebung?
  3. Welche Entfernung (in Meter) legt der Zug während der Fahrradfahrt zurück?
  4. Berechne auf zwei verschiedene Arten, welche Entfernung Lucy während ihrer Fahrradfahrt bezogen auf die Umgebung zurücklegt.


Aufgabe

Erfahrungsgemäß essen bei einem Kindergeburtstag sieben Kinder je zwei Kuchen. Skizziere den Kuchenanteil, den ein Kind isst. Wie viele Kuchen braucht man mindestens für zwanzig Kinder, wie viel Kuchen bleibt übrig? Wie viele Kinder kann man mit sieben Kuchen höchstens versorgen, wie viel Kuchen bleibt übrig?


Aufgabe

Für welche ist die lineare Abbildung

injektiv bzw. surjektiv?


Aufgabe

Ein Birnenverkäufer verkauft Birnen für Euro. Beschreibe dieses Angebot durch die kleinstmöglichsten ganzen Zahlen.


Aufgabe *

Ein Apfelverkäufer verkauft Äpfel für Euro. Ein zweiter Apfelverkäufer verkauft Äpfel für Euro. Welches Angebot ist günstiger?

Exemplo de função linear.jpg

Aufgabe

Es sei ein proportionaler Zusammenhang

durch einen Graphen, also eine Gerade durch den Nullpunkt, gegeben. Wie löst man geometrisch die Dreisatzaufgabe zu einem gegebenen , wie zu einem gegebenen ?


Aufgabe

Ein proportionaler Zusammenhang sei dadurch gegeben, dass an der Stelle der Wert herauskommen soll. Wie erstellt man daraus den Graphen des gesuchten Zusammenhangs?


Aufgabe

Es sei ein proportionaler Zusammenhang dadurch gegeben, dass

mit ganzen Zahlen ist. Dieser Zusammenhang wird in der Ebene durch den Graphen, nämlich eine Gerade durch den Nullpunkt, visualisiert, die an der Stelle den Wert besitzt. Wie bestimmt man das ganzzahlige Paar auf dem Graphen, für das positiv und minimal ist? Wie lautet die Antwort für und ?


Strich.png


Aufgabe

Zerlege geometrisch die angegebene Strecke in fünf gleichlange Teile.




Aufgaben zum Abgeben

Aufgabe (3 (1+1+1) Punkte)

Eine zu asphaltierende Straße ist sieben Meter breit. Die Asphaltierung eines Quadratmeters kostet Euro.

  1. Erstelle eine Formel, die die Asphaltierungskosten für die Straße pro Meter angibt.
  2. Bestimme die Kosten für die Aspaltierung von Metern der Straße.
  3. Der Stadtrat bewilligt eine Million Euro für die Straße. Wie viele volle Meter der Straße kann man damit asphaltieren?


Aufgabe (2 Punkte)

Frau Maier-Sengupta plant eine Schullandheimsfahrt für ihre Klasse. Es ist noch nicht klar, wie viele Kinder genau mitdürfen. Als Fahrtkosten für ein Kind fallen Euro an, für die Unterbringung Euro pro Kind und für die Verpflegung Euro pro Kind. Der Elternbeirat unterstützt jedes Kind mit Euro, aus Landesmitteln stehen weitere Euro pro Kind zur Verfügung. Wie hoch sind die Kosten für den Aufenthalt pro Kind? Wie hoch sind die Gesamtkosten, wenn Kinder mitkommen, wie hoch, wenn Kinder mitkommen?


Aufgabe (5 (1+1+1+2) Punkte)

Ein Zug ist Meter lang (ohne Lokomotive) und bewegt sich mit Stundenkilometer. Lucy Sonnenschein hat ihr Fahrrad mit in den Zug genommen und fährt mit einer Geschwindigkeit von Metern pro Sekunde von ganz hinten nach ganz vorne.

  1. Wie viele Sekunden benötigt Lucy für die gesamte Zuglänge?
  2. Welche Geschwindigkeit (in Meter pro Sekunde) hat Lucy bezogen auf die Umgebung?
  3. Welche Entfernung (in Meter) legt der Zug während der Fahrradfahrt zurück?
  4. Berechne auf zwei verschiedene Arten, welche Entfernung Lucy während ihrer Fahrradfahrt bezogen auf die Umgebung zurücklegt.


Aufgabe (3 Punkte)

Ein Apfelverkäufer verkauft Äpfel für Euro. Beschreibe dieses Angebot durch die kleinstmöglichsten ganzen Zahlen.


Aufgabe (2 Punkte)

Zerlege geometrisch die angegebene Strecke in sieben gleichlange Teile.


<< | Kurs:Grundkurs Mathematik (Osnabrück 2016-2017)/Teil I | >>

PDF-Version dieses Arbeitsblattes

Zur Vorlesung (PDF)