Kurs:Grundkurs Mathematik (Osnabrück 2016-2017)/Teil I/Vorlesung 22

Aus Wikiversity
Wechseln zu: Navigation, Suche
„... und ein guter Lehrer kann auch einem schlechten Schüler was beibringen“



Proportionalität

Häufig hängen zwei variable Größen - häufig mit und bezeichnet - in einer Weise voneinander ab, dass sich die zweite Größe aus der ersten errechnet, indem man mit einer bestimmten Konstanten multiplizieren muss. Zwischen den beiden Größen herrscht ein bestimmtes Verhältnis. Wir besprechen einige typische Beispiele.


Beispiel  

Der monatlich zu zahlende Strompreis hängt unmittelbar vom Verbrauch ab. Es gibt einen Grundpreis für die Kilowattstunde, sagen wir Cent, und dieser Grundpreis wird mit dem Verbrauch (sagen wir im Monat) multipliziert und ergibt dann den Gesamtstrompreis. Wenn man Kilowattstunden verbraucht hat, so muss man

zahlen, wenn man nur die Hälfte, also Kilowattstunden verbraucht hat, so muss man auch nur die Hälfte zahlen, gemäß



Beispiel  

Ein Fahrradfahrer fährt mit einer Geschwindigkeit von Stundenkilometer durch die Gegend. Nach Definition von Stundenkilometer legt er also in der Stunde Kilometer zurück. In zwei Stunden legt er somit

Kilometer zurück, in drei Stunden Kilometer, in vier Stunden Kilometer. Man kann natürlich auch überlegen, wie viele Kilometer er in kleineren Zeitabschnitten zurücklegt. Beispielsweise legt er in einer halben Stunde Kilometer[1] zurück, in Minuten Kilometer und so weiter.


In den Beispielen gibt es eine einfache Formel, die aus der ersten Größe (Stromverbrauch, gefahrene Zeit) die zweite Größe (Stromkosten, gefahrene Strecke) ausrechnet. Die Formel lautet

bzw.

Dabei ist im Moment nicht wichtig, welche Zahlen für und erlaubt sind, jedenfalls kann man natürliche Zahlen einsetzen (bald auch rationale Zahlen). Wichtig ist aber, dass man auf den beiden Seiten der Formeln stets mit den gleichen Einheiten rechnen muss. In der ersten Gleichung muss der Stromverbrauch in Kilowattstunden eingegeben werden und man erhält den Gesamtpreis in Cent (wenn man mit Euro arbeiten möchte, muss man die durch ersetzen), in der zweiten Gleichung muss die Zeitdauer in Stunden und die Strecke in Kilometern angegeben werden. Wenn eine Zeitangabe nicht in Stunden angegeben ist, so muss man diese zuerst in Stunden umrechnen, bevor man die Formel benutzen darf. Dies liefert uns weitere wichtige Beispiele für einen solchen Zusammenhang.


Beispiel  

Ein Tag besteht bekanntlich aus Stunden, eine Stunde aus Minuten, eine Minute aus Sekunden. Manchmal möchte man, beispielsweise, um verschiedene Angaben besser miteinander vergleichen zu können, eine Angabe in einer Einheit in eine andere Einheit umrechnen. Für die Umrechnung einer Zeitangabe in Stunden in eine Zeitangabe in Minuten muss man einfach die Stundenanzahl mit multiplizieren. Es liegt also die Beziehung

vor, wobei die Zeit in Stunden und die gleiche Zeit in Minuten angibt. Diesen Sachverhalt kann auch durch eine Wertetabelle sichtbar machen.

Stunden
Minuten

Die Beziehung zwischen der Zeit in Tagen und in Stunden wird durch die Formel

ausgedrückt, wobei jetzt die Anzahl der Tage und die Anzahl der Stunden ist.

Tage
Stunden

Wenn man die beiden Umrechnungen als unabhängig voneinander betrachtet, so ist es unproblematisch, hier wieder mit den Variablen und zu arbeiten, es handelt sich dann um einen neuen Kontext. Wenn man allerdings gleichzeitig mit Tagen, Stunden und Minuten arbeiten möchte, so ist es sehr gefährlich, mit einmal die Stunden und einmal die Tage und mit einmal die Minuten und einmal die Stunden zu bezeichnen, und die Stunden einmal mit und einmal mit zu bezeichnen. Um dies zu vermeiden, schreibt man die zweite Formel mit neuen Variablen beispielsweise als

Häufig sind auch suggestive Variablensymbole hilfreich. Wenn man für Tage, für Stunden und für Minuten nimmt, so schreiben sich die Umrechnungsformeln als

und

Solche Bezeichnungsphilosophien sollte man aber auch nicht überstrapazieren, wenn man noch Sekunden mitberücksichtigen möchte, ist das wegen Stunden schon besetzt.



Beispiel  

Häufig unterscheiden sich physikalische Einheiten um eine Zehnerpotenz. So gibt es Meter, Zentimeter, Millimeter, Kilometer oder Tonne, Kilogramm, Gramm, Milligramm (Zentner). In diesem Fall ist die Umrechnungsformel besonders einfach, beispielsweise gilt

wobei die Strecke in Meter und die Strecke in Zentimeter ist. Bei der rechnerischen Durchführung muss man dann nur eine gewisse Anzahl an Nullen anhängen oder weglassen.


Eine sinnvolle Probe für eine solche Umrechnungsformel erhält man, wenn man für den Wert einsetzt.


Beispiel  

Proportionale Zusammenhänge treten häufig bei geometrischen Figuren auf. Beispielsweise besteht zwischen dem Radius eines Kreises und seinem Umfang der proportionale Zusammenhang

zwischen dem Umfang eines Quadrats und seiner Seitenlänge gilt

zwischen der Höhe und der Grundseite in einem gleichseitigen Dreieck besteht die Beziehung


Aufgabe

Thales theorem.svg

Ein wichtiger geometrischer Ursprung für konstante Verhältnisse liefern die Strahlensätze bzw. ähnliche Dreiecke. Man hat zwei durch einen Punkt gehende Geraden und zwei parallele Geraden gegeben, die nicht durch den Punkt verlaufen. Dann bestehen zwischen entsprechenden Seitenlängen in den entstehenden Dreiecken konstante Verhältnisse. Im Bild verhält sich beispielsweise die Strecke zur Strecke wie die Strecke zur Strecke . Wenn man als variable Größe den Abstand von zu und als Größe die Streckenlänge der durch verlaufenden Dreiecksseite, die zur Strecke parallel ist, denkt, so liegt zwischen diesen Größen ein konstantes Verhältnis vor.



Beispiel  

In der Musik entsprechen die Töne den Schwingungen bzw. Frequenzen. In einer Tonleiter bestehen zwischen den verschiedenen Tönen gewisse erlaubte, wohlklingende Verhältnisse. Die Bezeichnungen dafür orientieren sich an der Reihenfolge in einer Tonleiter. Eine Oktave entspricht dem Frequenzverhältnis (das ist der „gleiche“, aber höhere Ton), eine Quinte entspricht beispielsweise dem Frequenzverhältnis . Als Beispiel geben wir die Verhältnisse in -Dur, das Verhältnis bezieht sich immer auf den Grundton . Die Verhältnisse und die relativen Namen wie Große Sekunde sind in jeder Dur-Tonart gleich, die Buchstabenbezeichnungen und die anzuschlagenden Tasten ändern sich.[2]

Verhältnis Verhältnisname Ton in C-Dur


Definition  

Wenn zwischen zwei Größen und (die in , in , in , in oder einem beliebigen kommutativen Ring variieren), ein Zusammenhang der Form

mit einer festen Zahl besteht, so spricht man von einem proportionalen Zusammenhang zwischen den beiden Größen und man sagt, dass proportional zu ist. Die Zahl , die den Umrechnungsfaktor zwischen den beiden Größen darstellt, heißt Proportionalitätskonstante.

Proportional variables.svg

Statt proportional spricht man auch von einem linearen Zusammenhang oder man sagt, dass zwischen den Größen ein konstantes Verhältnis besteht. Da man bei einem proportionalen Zusammenhang zu jedem den Wert

berechnen kann, liegt insbesondere eine Abbildung vor, die einem -Wert den -Wert zuordnet. Man spricht von einer linearen Abbildung oder einer linearen Funktion und schreibt auch

Wenn man den Graphen eines proportionalen Zusammenhanges zwischen zwei Größen zeichnet, so ergibt sich eine Gerade durch den Nullpunkt. Die Proportionalitätskonstante schlägt sich in der Steigung der Geraden nieder. Der Proportionalitätsfaktor und auch negative Proportionalitätsfaktoren sind erlaubt. Bei

sind die Rechnungen besonders einfach, wie wenn ein Huhn (pro Tag) ein Ei legt.

Multiplication chart.svg


Wir fassen die einfachen Eigenschaften eines proportionalen Zusammenhangs in dem folgenden Lemma zusammen.



Lemma  

Es sei ein proportionaler Zusammenhang

zwischen den beiden Größen und gegeben. Dann gelten folgende Eigenschaften.

  1. Es ist
  2. Es ist
  3. Wenn man die Größe um einen bestimmten Wert erhöht, so erhöht sich die Größe um einen bestimmten Wert , der unabhängig von ist.
  4. Wenn man die Größe um einen bestimmten Faktor vervielfacht (verdoppelt, verdreifacht, verzehnfacht), so vervielfacht (verdoppelt, verdreifacht, verzehnfacht) sich die Größe um den gleichen Faktor.

Beweis  

  1. Ist klar nach Lemma 9.2  (1) für den Grundbereich bzw. nach Lemma 19.4  (1) für einen beliebigen kommutativen Ring.
  2. Ist klar wegen
  3. Nach dem Distributivgesetz ist

    Die Differenz zwischen dem Ausgangswert und dem erhöhten Wert ist somit

    und dies ist unabhängig von .

  4. Die Vervielfachung werde durch den Faktor ausgedrückt. Dann ist der Wert an der Stelle gleich

    wie aus dem Assoziativgesetz und dem Kommutativgesetz der Multiplikation folgt.


Da der Proportionalitätsfaktor die gesamte Proportionalität bestimmt, lässt sich nach (2) die gesamte Proportionalität aus dem Wert an der Stelle der Einheit ablesen. (3) bedeutet beispielsweise, dass wenn Heinz Ngolo und Mustafa Müller jeweils die gleiche Menge mehr Strom verbrauchen wie im Vormonat (weil sie sich den gleichen Rasenmäher gekauft haben und gleich oft Rasen mähen und ansonsten alles beim Alten bleibt), dass dann ihre jeweilige Stromrechnung um den gleichen Betrag steigt, unabhängig davon, wie viel sie im Vormonat gezahlt haben.

Bemerkung  

Häufig besteht zwischen Größen ein proportionaler Zusammenhang, der nicht durch eine Konstante des Zahlbereiches gegeben ist, sondern dadurch, dass der Wert an einer bestimmten Stelle festgelegt ist, wie wenn der Preis für drei Äpfel als zwei Euro angegeben wird und nur die ganzen Zahlen zur Verfügung stehen. Ein solches Zahlenpaar legt dann einen (unvollständigen) proportionalen Zusammenhang nur für Vielfache dieser Zahlenpaare (und für Paare, die sich durch Division durch einen gemeinsamen Teiler ergeben) fest. Die Eigenschaften aus Lemma 22.8  (3,4) gelten auch in dieser Situation entsprechend.



Dreisatz

Unter Dreisatz versteht man Aufgaben, bei denen es sich um Größen handelt, zwischen denen eine Proportionalität vorliegt, wobei man aber oft den Proportionalitätsfaktor noch gar nicht kennt. Es gibt im Wesentlichen die folgenden Aufgabentypen und Mischformen davon.

  1. Der Zusammenhang

    ist vorgegeben, d.h. die Zahl ist bekannt und es geht darum, zu einem oder mehreren den zugehörigen Wert von zu bestimmen.

  2. Der Zusammenhang

    ist vorgegeben, d.h. die Zahl ist bekannt und es geht darum, zu einem (oder mehreren) Funktionswert den Ausgangswert für zu bestimmen.

  3. Es ist zwar klar, dass zwischen und ein proportionaler Zusammenhang besteht, es ist aber nicht klar, wie der Proportionalitätsfaktor aussieht. Typischerweise ist ein bestimmtes mit dem zugehörigen Wert gegeben und es wird das gesucht, das den linearen Zusammenhang beschreibt, also das mit
  4. Es ist zwar klar, dass zwischen und ein proportionaler Zusammenhang besteht, es ist aber nicht klar, wie der Proportionalitätsfaktor aussieht. Es ist ein bestimmtes mit dem zugehörigen Wert gegeben und es wird der Wert zu einem weiteren gesucht (oder der Ausgangswert zu einem weiteren ).

Die Formulierung in (4) ist eine Mischung aus (3) mit (1) bzw. mit (2). Allerdings kann man oft auch (4) direkt lösen, ohne den Proportionalitätsfaktor auszurechnen. Die Bezeichnung Dreisatz[3] rührt von der Situation in (4) her, wo die Beziehung

betrachtet wird (unabhängig davon, ob man das mit anführt) und wo die drei Zahlen (bzw. ) vorgegeben sind und man die vierte Zahl (bzw. ) bestimmen soll. Wir betrachten einige typische Beispiele.


Beispiel  

Aufgabe: Mustafa Müller fährt mit seinem Fahrrad zu seiner Oma, die sechs Kilometer entfernt lebt, er braucht dazu eine halbe Stunde. Wie viele Minuten braucht er zu seinem Freund Heinz Ngolo, der einen Kilometer von ihm entfernt wohnt.

Das ist Typ (4) vom Dreisatz mit der zusätzlichen Schwierigkeit, dass die Zeitangaben sich auf unterschiedliche Einheiten, nämlich Stunden und Minuten beziehen. Man kann beispielsweise seine Fahrgeschwindigkeit ausrechnen, es ergibt sich, da er in einer halben Stunde sechs Kilometer zurücklegt, dass er in einer Stunde zwölf Kilometer zurücklegt. Er fährt also zwölf Stundenkilometer, der Proportionalitätsfaktor (nach dem nicht gefragt wurde) ist also . Wir fragen uns nun nach der Zeit, die er benötigt, um einen Kilometer zurückzulegen. Da er für Kilometer Minuten braucht, benötigt er für einen Kilometer den zwölften Anteil einer Stunde, also Minuten.


Bemerkung  

Zwischen zwei Größen können unterschiedliche Proportionalitäten bestehen, beispielsweise kostet die Übernachtung Euro pro Urlaubstag, das Frühstück Euro pro Urlaubstag und der Strandkorb Euro pro Tag. In diesem Fall ist es sinnvoll, die einzelnen Proportionalitätskonstanten miteinander zu addieren, um eine Gesamtproportionalität zu erhalten, die die Gesamtkosten pro Tag wiedergibt. Wenn sich die beiden Proportionalitäten nicht auf die gleiche Grundeinheit wie hier ein Tag beziehen, so muss man zuerst einen gemeinsamen Bezugspunkt finden, um die beiden Proportionalitäten addieren zu können.


Bemerkung  

Wenn drei Größen gegeben sind und zwischen den beiden ersten eine Proportionalität und zwischen den beiden letzten Größen eine Proportionalität besteht, so besteht auch eine Proportionalität zwischen der ersten und der letzten Größe. Die neue Proportionalitätskonstante ist dabei das Produkt der beiden Proportionalitätskonstanten. Wenn nämlich und vorliegt, so ist

Eine solche Situation liegt zwischen Tagen, Stunden, Minuten vor. Oder wenn man pro Tag Schokoriegel isst und ein Schokoriegel Cent kostet, so sind die Schokoriegelkosten pro Tag gleich Euro.


Wir betrachten eine Gleichung der Form

mit fixierten ganzen Zahlen und der unbekannten Zahl . Diese Gleichung besitzt innerhalb der ganzen Zahlen genau dann eine Lösung, wenn ein Teiler von ist. Dies ist eine unmittelbare Umformulierung der Teilerbeziehung. Wenn dies der Fall ist, und ist, so ist die eindeutig bestimmte Lösung gleich dem ganzzahligen Quotienten . Eine solche Gleichung ist aber, wie die obigen Beispiele zeigen, auch sinnvoll, wenn kein Teiler von ist. Beispielsweise kann man Äpfel verkaufen und dabei drei Äpfel zum Preis von zwei Euro anbieten. Dann ist klar, dass sechs Äpfel vier Euro kosten u.s.w. Es liegt auch hier eine Proportionalität vor, es lässt sich aber kein Proportionalitätsfakor innerhalb der natürlichen Zahlen angeben. Der Preis für einen Apfel ist keine natürliche Zahl, aber das Verhältnis zwischen Preis zu Apfelanzahl ist konstant. So wie die Lösbarkeit der allgemeinen Differenzgleichung

Ausgangspunkt und Motivation zur Einführung der ganzen Zahlen war, ist die Lösbarkeit der allgemeinen Proportionalitätsgleichung

(mit ) Ausgangspunkt und Motivation zur Einführung der rationalen Zahlen. Wir möchten also sinnvolle Zahlen mit der charakteristischen Eigenschaft haben, dass sie mit multipliziert die Zahl ergeben. Da ganzzahlig ist, sagen wir aus , kann man diese Multiplikation auf die -fache Addition von mit sich selbst zurückführen. Wir suchen also eine Strecke, die, wenn man sie -mal hintereinander hinlegt, die Strecke ergibt.

Bemerkung  

Häufig liegt auch zwischen zwei Größen ein Zusammenhang der Form

vor, beispielsweise, wenn eine vom Verbrauch unabhängige Grundgebühr zu zahlen ist. Man spricht dann von einer affin-linearen Abbildung.




Fußnoten
  1. In dieser Darstellung ist das bereits eine rationale Zahl, was wir ja erst einführen wollen. In Metern gerechnet steht hier einfach .
  2. Für die gleichstufige Stimmung des Klaviers, bei der irrationale Schwingungsverhältnisse auftreten, siehe Beispiel 42.13.
  3. Zur Grundbedeutung von Dreisatz gibt es verschiedene Interpretationen.


<< | Kurs:Grundkurs Mathematik (Osnabrück 2016-2017)/Teil I | >>

PDF-Version dieser Vorlesung

Arbeitsblatt zur Vorlesung (PDF)