Zum Inhalt springen

Lineare Abbildung/Basiswechsel/Ohne Beweis/Textabschnitt

Aus Wikiversity


Es sei ein Körper und es seien und endlichdimensionale -Vektorräume. Es seien und Basen von und und Basen von . Es sei

eine lineare Abbildung, die bezüglich der Basen und durch die Matrix beschrieben werde.

Dann wird bezüglich der Basen und durch die Matrix

beschrieben, wobei und die Übergangsmatrizen sind, die die Basiswechsel von nach und von nach beschreiben.



Es sei ein Körper und es sei ein endlichdimensionaler -Vektorraum. Es sei

eine lineare Abbildung. Es seien und Basen von .

Dann besteht zwischen den Matrizen, die die lineare Abbildung bezüglich bzw. (beidseitig) beschreiben, die Beziehung

Dies folgt direkt aus Fakt.



Zwei quadratische Matrizen heißen ähnlich, wenn es eine invertierbare Matrix mit gibt.

Nach Fakt sind zu einer linearen Abbildung die beschreibenden Matrizen bezüglich zweier Basen ähnlich zueinander.