eine
Abbildung
und
.
Die Abbildung heißt stetig in, wenn für jedes
ein
derart existiert, dass
gilt. Die Abbildung heißt stetig, wenn sie stetig in für jedes
ist.
Statt mit den abgeschlossenen Ballumgebungen könnte man hier genauso gut mit den offenen Ballumgebungen arbeiten. Die einfachsten Beispiele für stetige Abbildungen sind konstante Abbildungen, die Identität eines metrischen Raumes und die Inklusion
einer mit der induzierten Metrik versehenen Teilmenge eines metrischen Raumes. Siehe dazu die Aufgaben. Bei
stimmt diese Definition mit der bisherigen überein.
Der folgende Satz heißt Folgenkriterium und ist eine direkte Verallgemeinerung von
Fakt.
Die Äquivalenz von (1) und (2) ist klar.
Es sei nun (2) erfüllt und sei eine Folge in , die gegen konvergiert. Wir müssen zeigen, dass
ist. Dazu sei
gegeben. Wegen (2) gibt es ein mit der angegebenen Eigenschaft und wegen der Konvergenz von gegen gibt es eine natürliche Zahl derart, dass für alle
die Abschätzung
gilt. Nach der Wahl von ist dann
sodass die Bildfolge gegen konvergiert.
Es sei (3) erfüllt und
vorgegeben. Wir nehmen an, dass es für alle
Elemente
gibt, deren Abstand zu maximal gleich ist, deren Wert unter der Abbildung aber zu einen Abstand größer als besitzt. Dies gilt dann insbesondere für die Stammbrüche
, .
D.h. für jede natürliche Zahl gibt es ein
mit
Diese so konstruierte Folge konvergiert gegen , aber die Bildfolge konvergiert nicht gegen , da der Abstand der Bildfolgenwerte zu zumindest ist. Dies ist ein Widerspruch zu (3).
Die Äquivalenz der ersten drei Formulierungen folgt direkt aus
Fakt.
Es sei (1) erfüllt und eine offene Menge
gegeben mit dem Urbild
.
Sei
ein Punkt mit dem Bildpunkt
.
Da offen ist, gibt es nach Definition ein
mit
.
Nach (2) gibt es ein
mit
.
Daher ist
und wir haben eine offene Ballumgebung von innerhalb des Urbilds gefunden. Deshalb ist offen.
Es sei (4) erfüllt und
mit
und
vorgegeben. Da der offene Ball offen ist, ist wegen (4) auch das Urbild offen. Da zu dieser Menge gehört, gibt es ein
mit