Zum Inhalt springen

Metrischer Raum/Offene und abgeschlossene Teilmengen/Textabschnitt

Aus Wikiversity
Die Gestalt der Kugelumgebungen hängt von der Metrik ab.


Es sei ein metrischer Raum, und eine positive reelle Zahl. Es ist

die offene und

die abgeschlossene -Kugel um .

Natürlich müssen Kugeln nicht unbedingt kugelförmig aussehen, aber sie tun es in der euklidischen Norm. Für ist einfach das beidseitig offene Intervall und ist einfach das beidseitig abgeschlossene Intervall .

Eine Teilmenge ist offen, wenn jeder Punkt darin gleich mit einer vollen Kugelumgebung drin liegt. Bei einer solchen Menge ist es entscheidend, ob die Randpunkte dazu gehören oder nicht.



Es sei ein metrischer Raum. Eine Teilmenge heißt offen (in ), wenn für jedes ein mit

existiert.


Es sei ein metrischer Raum. Eine Teilmenge heißt abgeschlossen, wenn das Komplement offen ist.

Achtung! Abgeschlossen ist nicht das „Gegenteil“ von offen. Die „allermeisten“ Teilmengen eines metrischen Raumes sind weder offen noch abgeschlossen, es gibt aber auch Teilmengen, die sowohl offen als auch abgeschlossen sind, z.B. die leere Teilmenge und die Gesamtmenge.



Es sei ein metrischer Raum und ein Punkt.

Dann sind die offenen Kugeln offen und die abgeschlossenen Kugeln abgeschlossen.

Sei , d.h. es ist . Wir setzen und behaupten, dass ist. Dazu sei . Dann ist aufgrund der Dreiecksungleichung

und somit . Für die zweite Behauptung siehe Aufgabe.



Es sei ein metrischer Raum. Dann gelten folgende Eigenschaften.

  1. Die leere Menge und die Gesamtmenge sind offen.
  2. Es sei eine beliebige Indexmenge und seien , , offene Mengen. Dann ist auch die Vereinigung

    offen.

  3. Es sei eine endliche Indexmenge und seien , , offene Mengen. Dann ist auch der Durchschnitt

    offen.

Beweis

Siehe Aufgabe.