Metrischer Raum/Offene und abgeschlossene Teilmengen/Textabschnitt
Es sei ein metrischer Raum, und eine positive reelle Zahl. Es ist
die offene und
die abgeschlossene -Kugel um .
Natürlich müssen Kugeln nicht unbedingt kugelförmig aussehen, aber sie tun es in der euklidischen Norm. Für ist einfach das beidseitig offene Intervall und ist einfach das beidseitig abgeschlossene Intervall .
Es sei ein metrischer Raum. Eine Teilmenge heißt abgeschlossen, wenn das Komplement offen ist.
Achtung! Abgeschlossen ist nicht das „Gegenteil“ von offen. Die „allermeisten“ Teilmengen eines metrischen Raumes sind weder offen noch abgeschlossen, es gibt aber auch Teilmengen, die sowohl offen als auch abgeschlossen sind, z.B. die leere Teilmenge und die Gesamtmenge.
Es sei ein metrischer Raum und ein Punkt.
Dann sind die offenen Kugeln offen und die abgeschlossenen Kugeln abgeschlossen.
Sei , d.h. es ist . Wir setzen und behaupten, dass ist. Dazu sei . Dann ist aufgrund der Dreiecksungleichung
und somit . Für die zweite Behauptung siehe Aufgabe.
Es sei ein metrischer Raum. Dann gelten folgende Eigenschaften.
- Die leere Menge und die Gesamtmenge sind offen.
- Es sei eine beliebige Indexmenge und seien
, ,
offene Mengen. Dann ist auch die
Vereinigung
offen.
- Es sei eine endliche Indexmenge und seien
, ,
offene Mengen. Dann ist auch der
Durchschnitt
offen.