Prägarben/Einführung/Textabschnitt

Aus Wikiversity
Zur Navigation springen Zur Suche springen


Definition  

Es sei ein topologischer Raum. Unter einer Prägarbe auf versteht man eine Zuordnung, die jeder offenen Menge eine Menge und zu je zwei offenen Mengen eine Abbildung

zuordnet, wobei diese Zuordnung die beiden folgenden Bedingungen erfüllen muss.

  1. Zu ist
  2. Zu offenen Mengen

    ist stets

Die Abbildungen heißen dabei Restriktionsabbildungen. Die Mengen nennt man auch die Auswertung der Prägarbe an der offenen Menge .

Grundbeispiele für Prägarben (und Garben) sind die folgenden Konstruktionen.


Beispiel  

Es seien und topologische Räume. Jeder offenen Teilmenge kann man die Menge der auf definierten stetigen Abbildungen nach zuordnen, also

Da man eine stetige Abbildung auf jede offene Teilmenge einschränken kann und da man zu die Einschränkung von auf in einem Schritt oder in zwei Schritten machen kann, erhält man eine Prägarbe.


Ein Spezialfall hiervon wird im folgenden Beispiel formuliert, in dem eine zusätzliche Struktur, nämlich ein beringter Raum vorliegt.


Beispiel  

Es sei ein topologischer Raum. Jeder offenen Teilmenge kann man die Menge der auf definierten reellwertigen stetigen Funktionen zuordnen, also

Da man eine stetige Funktion auf jede offene Teilmenge einschränken kann, erhält man eine Prägarbe.



Beispiel  

Es sei eine differenzierbare Mannigfaltigkeit. Jeder offenen Teilmenge kann man die Menge der auf definierten reellwertigen differenzierbaren Funktionen zuordnen, also

Da man eine differenzierbare Funktion auf jede offene Teilmenge einschränken kann, erhält man eine Prägarbe.



Beispiel  

Auf einem topologischen Raum und zu einer fixierten Menge ist die Zuordung, die jeder offenen Menge die Menge und jeder Inklusion die Identität auf zuordnet, eine Prägarbe, die die konstante Prägarbe heißt.




Beispiel  

Es seien und topologische Räume und es sei

eine fixierte stetige Abbildung. Diese Situation induziert für jede offene Teilmenge eine stetige Abbildung

Somit kann man zu die Menge der auf definierten stetigen Schnitte zu zuordnen, also

Da man einen stetigen Schnitt auf jede offene Teilmenge einschränken kann, wobei der Bildbereich entsprechend auf eingeschränkt wird, erhält man eine Prägarbe.


Aufgrund dieses wichtigen Beispiels nennt man ein Element auch einen Schnitt der Prägarbe über . Für die Einschränkung eines Schnittes auf eine kleinere offene Menge schreibt man auch suggestiver


Definition  

Zu einer Prägarbe auf einem topologischen Raum heißt eine Prägarbe eine Unterprägarbe von , wenn für jede offene Teilmenge ist.

Da differenzierbare Funktionen auf einer Mannigfaltigkeit insbesondere stetig sind, bildet die Prägarbe der differenzierbaren Funktionen eine Untergarbe der Prägarbe der stetigen reellwertigen Funktionen.