Zum Inhalt springen

Vektorfelder/Gradientenfelder/Einführung/Textabschnitt

Aus Wikiversity


Es sei ein euklidischer Vektorraum, offen und

eine differenzierbare Funktion. Dann nennt man die Abbildung

das zugehörige Gradientenfeld.

Ein Gradientenfeld ist also ein zeitunabhängiges Vektorfeld. Man spricht auch von einem Potentialfeld, die Funktion (manchmal ) heißt dann ein Potential des Vektorfeldes. Wenn zweimal stetig differenzierbar ist, so genügt nach Fakt das zugehörige Gradientenfeld lokal einer Lipschitz-Bedingung.

Die folgende Aussage zeigt, dass die Lösungskurven der zugehörigen Differentialgleichung senkrecht auf den Fasern von liegen. Die Fasern beschreiben, wo das Potential (oder die Höhenfunktion) konstant ist, die Lösungen beschreiben nach Fakt den Weg des steilsten Anstiegs. Wenn beispielsweise die Höhenfunktion eines Gebirges ist, so gibt das Gradientenfeld in jedem Punkt den steilsten Anstieg an und die Trajektorie einer Lösungskurve beschreibt den Verlauf eines Baches (wir behaupten nicht, dass die Bewegung eines Wassermoleküls im Bach durch diese Differentialgleichung bestimmt ist, sondern lediglich, dass der zurückgelegte Weg, also das Bild der Kurve, mit dem Bild der Lösungskurve übereinstimmt). Der Bach verläuft immer senkrecht zu den Höhenlinien.


Es sei ein euklidischer Vektorraum, offen,

eine differenzierbare Funktion und

das zugehörige Gradientenfeld. Es sei

eine Lösung der Differentialgleichung

Dann steht senkrecht auf dem Tangentialraum der Faser von durch für , für die reguläre Punkte von sind.

Sei ein regulärer Punkt von und sei ein Vektor aus dem Tangentialraum. Dann gilt direkt



Wir betrachten die Produktabbildung

Das zugehörige Gradientenfeld ist

Die Fasern von sind das Achsenkreuz (die Faser über ) und die durch , , gegebenen Hyperbeln. Die Lösungen der linearen Differentialgleichung

sind von der Form

mit beliebigen , wie man direkt nachrechnet und was sich auch aus Fakt bzw. Aufgabe ergibt. Dabei ist . Für ist dies die stationäre Lösung im Nullpunkt, in dem die Produktabbildung nicht regulär ist. Bei ist , das Bild dieser Lösung ist die obere Halbdiagonale (ohne den Nullpunkt), bei ist , das Bild dieser Lösung ist die untere Halbdiagonale, bei und ist , das Bild dieser Lösung ist die untere Hälfte der Nebendiagonalen, bei und ist , das Bild dieser Lösung ist die obere Hälfte der Nebendiagonalen.

Ansonsten treffen die Lösungskurven das Achsenkreuz in einem Punkt . Wenn man diesen Punkt als Anfangswert zum Zeitpunkt nimmt, so kann man die Lösungskurven als

(zum Zeitpunkt befindet sich die Lösung auf der Achse im Punkt ),

und als

(zum Zeitpunkt befindet sich die Lösung auf der Achse im Punkt ) realisieren. Die Bahnen dieser Lösungen erfüllen die Gleichung bzw. , d.h. sie sind selbst Hyperbeln.