Zum Inhalt springen

Affiner Raum/Affines Erzeugendensystem/Einführung/Textabschnitt

Aus Wikiversity


Es sei ein affiner Raum über dem -Vektorraum .

Dann ist der Durchschnitt von einer Familie , , von affinen Unterräumen wieder affin.

Wenn der Durchschnitt leer ist, so gilt die Aussage nach Definition. Es sei . Wir können die affinen Unterräume als

mit Untervektorräumen schreiben. Sei

was nach Fakt  (1) ein Untervektorraum ist. Wir behaupten

Aus folgt

mit , sodass liegt. Umgekehrt folgt aus direkt .

Insbesondere gibt es zu jeder Teilmenge in einem affinen Raum einen kleinsten affinen Unterraum, der umfasst.


Es sei ein affiner Raum über dem -Vektorraum und eine Teilmenge.

Dann besteht der kleinste affine Unterraum von , der umfasst, aus allen baryzentrischen Kombinationen

Die angegebene Menge enthält die einzelnen Punkte aus , da man als baryzentrisches Koordinatentupel insbesondere ein Standardtupel nehmen kann. Daher ergibt sich die Behauptung aus Fakt und Aufgabe.



Es sei ein affiner Raum über dem -Vektorraum und sei ein affiner Unterraum. Eine Familie von Punkten , , heißt affines Erzeugendensystem von , wenn der kleinste affine Unterraum von ist, der alle Punkte umfasst.

Ein Punkt erzeugt als affinen Raum den Punkt selbst, zwei Punkte erzeugen die Verbindungsgerade.