Elementare und algebraische Zahlentheorie/14/Klausur

Aus Wikiversity
Zur Navigation springen Zur Suche springen


Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Punkte 3 3 0 2 4 2 3 4 3 0 4 0 0 0 0 0 28



Aufgabe * (3 Punkte)

Definiere die folgenden (kursiv gedruckten) Begriffe.

  1. Der Produktring zu kommutativen Ringen .
  2. Ein über einem Körper algebraisches Element einer -Algebra .
  3. Ein maximales Ideal in einem kommutativen Ring .
  4. Ein diskreter Bewertungsring.
  5. Der Divisor zu einem gebrochenen Ideal von einem Zahlbereich.
  6. Eine binäre quadratische Form.


Aufgabe * (3 Punkte)


Aufgabe (0 Punkte)


Aufgabe * (2 Punkte)

Man gebe zwei Primfaktoren von an.


Aufgabe * (4 (1+3) Punkte)

  1. Gibt es eine Primzahl derart, dass auch und Primzahlen sind?
  2. Gibt es mehr als eine Primzahl derart, dass auch und Primzahlen sind?


Aufgabe * (2 Punkte)

Sei ein Integritätsbereich und der Polynomring über . Zeige, dass die Einheiten von genau die Einheiten von sind.


Aufgabe * (3 Punkte)

Man gebe ein Polynom an, das nicht zu gehört, aber die Eigenschaft besitzt, dass für jede ganze Zahl gilt: .


Aufgabe * (4 (1+1+2) Punkte)

a) Man gebe ein Beispiel für rationale Zahlen mit

b) Man gebe ein Beispiel für rationale Zahlen mit

c) Man gebe ein Beispiel für irrationale Zahlen und eine rationale Zahl mit


Aufgabe * (3 (1+2) Punkte)

  1. Finde eine ganzzahlige Lösung für die Gleichung
  2. Zeige, dass

    eine Lösung für die Gleichung

    ist.


Aufgabe (0 Punkte)


Aufgabe * (4 Punkte)

Beschreibe den Körper mit neun Elementen als einen Restklassenkörper von . Man gebe eine primitive Einheit in an.


Aufgabe (0 Punkte)


Aufgabe (0 Punkte)


Aufgabe (0 Punkte)


Aufgabe (0 Punkte)


Aufgabe (0 Punkte)