Zum Inhalt springen

Homogene Polynome/Projektive Nullstellengebilde/Zariski-Topologie/Einführung/Textabschnitt

Aus Wikiversity

Für ein beliebiges Polynom ergibt es keinen Sinn zu sagen, ob ein Punkt eine Nullstelle davon ist, da diese Eigenschaft nicht invariant unter der Multiplikation mit einem Skalar ist und daher vom Repräsentanten von abhängt. Für homogene Polynome sieht das anders aus.



Es sei ein Körper und sei ein homogenes Polynom vom Grad .

Dann gilt für einen Punkt und einen Skalar die Beziehung

Insbesondere verschwindet in genau dann, wenn für ein beliebiges in verschwindet.

Dies kann man auf den Fall eines Monoms vom Grad zurückführen. Für mit und gilt


Man beachte, dass es durch diese Aussage zwar wohldefiniert ist, ob ein homogenes Polynom an einem projektiven Punkt verschwindet oder nicht, dass es aber keinen Sinn ergibt, einem homogenen Polynom einen Wert an jedem Punkt des projektiven Raumes zuzuordnen. Ein homogenes Polynom definiert keine Funktion auf dem projektiven Raum.


Es sei ein Körper. Zu einem homogenen Polynom bezeichnet man die Menge

als die projektive Nullstellenmenge zu .

Wenn man bestimmen möchte, so kann man die disjunkte Zerlegung

(ebenso für jede andere Variable) ausnutzen. Zur Bestimmung von setzt man in die Variable gleich und muss die Lösungen im affinen Raum von finden. Dabei wird das Polynom inhomogen, gleichzeitig eliminiert man eine Variable. Die Dimension bleibt gleich, die Situation wird aber affin. Zur Bestimmung von setzt man in die Variable gleich und muss die Lösungen im projektiven Raum von finden. Hier eliminert man eine Variable, das Polynom bleibt homogen, man bleibt projektiv, die Dimension reduziert sich um .


Die einfachsten homogenen Polynome in sind die vom Grad , also Ausdrücke der Form

wobei nicht alle Koeffizienten gleichzeitig sein dürfen. Die affine Nullstellenmenge im ist ein -dimensionaler affiner Raum durch den Nullpunkt, die projektive Nullstellenmenge im ist isomorph zu einem -dimensionalen projektiven Raum.



Es sei ein Körper und ein Ideal. Das Ideal heißt homogen, wenn für jedes mit der homogener Zerlegung auch für alle homogenen Bestandteile ist.


Zu einem homogenen Ideal nennt man

das projektive Nullstellengebilde oder die projektive Varietät zu .


Der projektive Raum wird mit der Zariski-Topologie versehen, bei der die Mengen zu einem homogenen Ideal als abgeschlossen erklärt werden.

Die offenen Mengen des projektiven Raumes sind demnach die Mengen der Form zu einem homogenen Ideal . Dabei sind die offenen Mengen isomorph zu einem affinen Raum der Dimension .

Ein Punkt ist abgeschlossen, und zwar ist mit

Wenn ist, so kann man dies auch als schreiben. Die Erzeuger , , sind dann überflüssig. Dieses Ideal ist offenbar homogenen, und liegt in . Sei angenommen. Für einen weiteren Punkt folgt sofort für alle bzw.

sodass es sich projektiv um den gleichen Punkt handelt.

Das Ideal ist kein maximales Ideal im Polynomring, es ist aber maximal unter allen homogenen Idealen, die von verschieden sind. In definiert es eine Gerade durch den Nullpunkt, und zwar die Gerade, die dem projektiven Punkt entspricht.