Kommutativer Ring/Freie Auflösung/Einführung/Textabschnitt
Es sei ein kommutativer Ring und ein -Modul. Eine freie Auflösung ist ein (linksseitig unendlicher) exakter Komplex
wobei die freie endlich erzeugte -Moduln sind.
Die haben somit die Form mit . Die -Modulhomomorphismen
werden durch Matrizen beschrieben. Da surjektiv ist, muss endlich erzeugt sein, wenn es für ihn eine freie Auflösung gibt. Den Modul kann man aus der Auflösung , bei der man weglässt, als Kokern von rekonstruieren. Die Bedeutung von freien Auflösungen liegt darin, beliebig komplizierte und insbesondere hochgradig nichtfreie Moduln durch freie Moduln zu beschreiben.
Es sei ein noetherscher kommutativer Ring und ein endlich erzeugter -Modul.
Dann besitzt eine freie Auflösung mit endlich erzeugten freien Moduln.
Znächst gibt es einen surjektiven -Modulhomomorphismus
wobei die Standardvektoren auf ein (endliches) Erzeugendensystem von abgebildet werden. Somit hat man eine kurze exakte Sequenz
Nach Fakt ist ein noetherscher Modul und somit ist ebenfalls endlich erzeugt. Man findet daher wieder eine Surjektion
und so kann man induktiv fortfahren.
Eine freie Auflösung
eines -Moduls heißt minimal, wenn in jedem Schritt die Abbildung
durch ein Erzeugendensystem von
von minimaler Anzahl gegeben ist.
Es sei ein lokaler noetherscher Ring, ein endlich erzeugter -Modul und
eine minimale freie Auflösung von .
Dann ist der Rang von gleich der -Dimension von mit .
Beweis
Es sei ein lokaler noetherscher Ring und ein endlich erzeugter -Modul.
Dann ist die minimale freie Auflösung von im folgenden Sinne eindeutig bestimmt: Wenn
und
minimale freie Auflösungen von sind, dann gibt es -Modulisomorphismen
derart, dass die Diagramme
kommutieren.
Wir konstruieren induktiv die , . Für betrachten wir die Situation
Wegen der Minimalität rühren beide Abbildungen von einem minimalen Modulerzeugendensystem der Länge von her, sagen wir
und
Es ist dann
Durch die Festlegung
erhält man dann einen -Modulhomomorphismus von nach , der mit den gegebenen Abbildungen kommutiert. Die Abbildung ist surjektiv, da andernfalls ein echter Untermodul von schon surjektiv auf abbildet würde, was der Minimalität von widerspricht (siehe Aufgabe). Dieser Isomorphismus führt somit auch die Kerne
und
ineinander über. Es sei nun vorausgesetzt, dass die Isomorphismen schon konstruiert sind und die Kerne ineinander überführen. Dann liegt die Situation
vor, wobei das Quadrat rechts kommutiert. Sowohl als auch rühren von einem minimalen Erzeugendensystem von bzw. her. Das im Wesentlichen gleiche Argument wie am Induktionsanfang zeigt, dass es einen Isomorphismus
gibt, der die Kerne ineinander überführt.