Kompaktheit/Zusammenstellung für Mannigfaltigkeiten/Textabschnitt

Aus Wikiversity
Zur Navigation springen Zur Suche springen

Teilmengen eines euklidischen Raumes, die sowohl abgeschlossen als auch beschränkt sind, nennt man kompakt. Auf topologischen Räumen, die nicht durch eine Metrik gegeben sind, kann man nicht von beschränkt sprechen, aber auch bei einem metrischen Raum, der keine Teilmenge eines ist, führen die beiden Eigenschaften abgeschlossen und beschränkt nicht sehr weit. Schlagkräftiger ist das folgende Konzept.


Definition  

Ein topologischer Raum heißt kompakt (oder überdeckungskompakt), wenn es zu jeder offenen Überdeckung

eine endliche Teilmenge derart gibt, dass

ist.

Diese Eigenschaft nennt man manchmal auch überdeckungskompakt. Häufig nimmt man zu kompakt noch die Eigenschaft Hausdorffsch mit hinzu. Es sei betont, dass diese Eigenschaft nicht besagt, dass es eine endliche Überdeckung aus offenen Mengen gibt (es gibt immer die triviale offene Überdeckung mit dem Gesamtraum), sondern dass man, wenn irgendeine irgendwie indizierte offene Überdeckung vorliegt, dann nur eine endliche Teilmenge aus der Indexmenge für die Überdeckung nötig ist.



Lemma  

Es sei ein topologischer Raum mit einer abzählbaren Basis.

Dann ist genau dann kompakt, wenn jede Folge in einen Häufungspunkt (in ) besitzt.

Beweis  

Sei kompakt und sei eine Folge gegeben.  Nehmen wir an, dass diese Folge keinen Häufungspunkt besitzt. Das bedeutet, dass es zu jedem eine offene Umgebung gibt, in der es nur endlich viele Folgenglieder gibt. Wegen gibt es nach Voraussetzung eine endliche Teilüberdeckung . Diese enthält einerseits alle Folgenglieder und andererseits nur endlich viele Folgenglieder, ein Widerspruch.

Sei die Folgeneigenschaft erfüllt und sei eine Überdeckung mit offenen Mengen. Da eine abzählbare Basis besitzt, gibt es nach Aufgabe eine abzählbare Teilmenge mit . Wir können annehmen.  Nehmen wir an, dass die Überdeckung keine endliche Teilüberdeckung besitzt. Dann ist insbesondere , und daher gibt es zu jedem ein  mit . Nach Voraussetzung besitzt diese Folge einen Häufungspunkt . Da eine Überdeckung vorliegt, gibt es ein mit . Da ein Häufungspunkt ist, liegen unendlich viele Folgenglieder in . Dies ist ein Widerspruch, da nach Konstruktion für die Folgenglieder nicht zu gehören.


Der folgende Satz heißt Satz von Heine-Borel.



Satz  

Es sei eine Teilmenge Dann sind folgende Aussagen äquivalent.

  1. ist überdeckungskompakt.
  2. Jede Folge in besitzt einen Häufungspunkt in .
  3. Jede Folge in besitzt eine in konvergente Teilfolge.
  4. ist abgeschlossen und beschränkt.

Beweis  

Die Äquivalenz von (1) und (2) wurde allgemeiner in Fakt bewiesen.
Die Äquivalenz von (2) und (3) ist klar.
Die Äquivalenz von (3) und (4) wurde in Fakt gezeigt.