Kreisteilungspolynom/Irreduzibel/Einführung/Textabschnitt

Aus Wikiversity


Definition  

Es sei und seien die primitiven komplexen Einheitswurzeln. Dann heißt das Polynom

das -te Kreisteilungspolynom.

Nach Konstruktion hat das -te Kreisteilungspolynom den Grad .


Lemma  

Es sei .

Dann gilt in die Gleichung

Beweis  

Jede der verschiedenen -ten Einheitswurzeln besitzt eine Ordnung , die ein Teiler von ist. Eine -te Einheitswurzel der Ordnung ist eine primitive -te Einheitswurzel. Die Aussage folgt daher aus



Lemma  

Die Koeffizienten der Kreisteilungspolynome

liegen in .

Beweis  

Induktion über . Für ist . Für beliebiges betrachten wir die in Fakt bewiesene Darstellung

Der linke Faktor ist ein normiertes Polynom und er besitzt nach der Induktionsvoraussetzung Koeffizienten in . Daraus folgt mit Aufgabe, dass auch Koeffizienten in besitzt.


Grundlegend ist die folgende Aussage.


Satz  

Die Kreisteilungspolynome sind irreduzibel über .

Beweis  

 Nehmen wir an, dass nicht irreduzibel über ist. Dann gibt es nach Fakt eine Zerlegung mit normierten Polynomen von kleinerem Grad. Wir fixieren eine primitive -te Einheitswurzel . Dann ist nach Definition der Kreisteilungspolynome und daher ist (ohne Einschränkung) . Wir können annehmen, dass irreduzibel und normiert ist, also das Minimalpolynom von ist.  Wir werden zeigen, dass jede primitive -te Einheitswurzel ebenfalls eine Nullstelle von ist. Dann folgt aus Gradgründen im Widerspruch zur Reduzibilität. Jede primitive Einheitswurzel kann man als mit einer zu teilerfremden Zahl schreiben. Es genügt dabei, den Fall mit einer zu teilerfremden Primzahl zu betrachten, da sich jedes sukzessive als -Potenz von erhalten lässt (wobei man sukzessive durch ersetzt und verwendet).  Nehmen wir also an, dass ist. Dann muss sein. Daher ist eine Nullstelle des Polynoms und daher gilt mit , da ja das Minimalpolynom von ist. Wegen Aufgabe gehören die Koeffizienten von zu . Wir betrachten nun die Polynome modulo , also als Polynome in , wobei wir dafür usw. schreiben. Aufgrund des Frobeniushomomorphismus in Charakteristik und wegen des kleinen Fermat'schen Satzes gilt

Daher ist

Es sei nun der Zerfällungskörper von über , so dass über insbesondere auch und damit auch in Linearfaktoren zerfällt. Es sei eine Nullstelle von . Dann ist wegen der obigen Teilbarkeitsbeziehung auch eine Nullstelle von . Wegen ist dann eine mehrfache Nullstelle von . Damit besitzt auch eine mehrfache Nullstelle in . Nach dem formalen Ableitungskriterium ist aber und dieser Koeffizient ist wegen der vorausgesetzten Teilerfremdheit nicht . Also erzeugt das Polynom und seine Ableitung das Einheitsideal, so dass es nach Aufgabe keine mehrfache Nullstellen geben kann und wir einen Widerspruch erhalten.



Korollar  

Der -te Kreisteilungskörper über hat die Beschreibung

wobei das -te Kreisteilungspolynom bezeichnet.

Der Grad des -ten Kreisteilungskörpers ist .

Beweis  

Es ist , wobei eine primitive -te Einheitswurzel ist. Nach Definition des Kreisteilungspolynoms ist und nach Fakt ist das Kreisteilungspolynom irreduzibel, so dass es sich um das Minimalpolynom von handeln muss. Also ist nach Fakt .