Kurs:Algebraische Kurven (Osnabrück 2008)/Arbeitsblatt 17
Aufgabe (2 Punkte)
Betrachte den Monoidhomomorphismus
Beschreibe die zugehörige Abbildung zwischen den Monoidringen (für einen Körper ) und den zugehörigen -Spektren.
Aufgabe (2 Punkte)
Es seien kommutative Monoide. Zeige, dass durch
ein Untermonoid von gegeben ist, das umfasst.
Aufgabe (6 Punkte)
Es seien endlich erzeugte kommutative Monoide. Zeige, dass für einen Körper der Ringhomomorphismus genau dann endlich ist, wenn es zu jedem ein mit gibt.
Aufgabe (4 Punkte)
Es sei die additive Gruppe der rationalen Zahlen. Bestimme . Wie sieht es aus, wenn man durch ersetzt?
Aufgabe (4 Punkte)
Es sei ein Homomorphismus von kommutativen Monoiden. Zeige, dass die Menge aller Punkte aus , die unter der Spektrumsabbildung auf den Einspunkt abgebildet werden, selbst die Struktur eines -Spektrums eines geeigneten Monoids besitzt.
Aufgabe (4 Punkte)
Wir betrachten Monoide der Form . Beschreibe allgemein sowie für die Körper . Finde die idempotenten Elemente von .
Aufgabe (4 Punkte)
Es sei ein kommutatives Monoid. Zeige, dass die zugehörige Differenzengruppe eine kommutative Gruppe ist, und dass sie folgende universelle Eigenschaft besitzt: Zu jedem Monoidhomomorphismus
in eine Gruppe gibt es einen eindeutig bestimmten Gruppenhomomorphismus
der fortsetzt.
Aufgabe (3 Punkte)
Es sei ein kommutatives Monoid mit zugehöriger Differenzengruppe . Zeige, dass folgende Aussagen äquivalent sind.
- ist ein Monoid mit Kürzungsregel.
- Die kanonische Abbildung ist injektiv.
- lässt sich als Untermonoid einer Gruppe realisieren.
Aufgabe (4 Punkte)
Es sei ein Körper und eine Gruppe. Dann können wir den Monoidring betrachten. Es sei nun weiter ein -Modul. Zeige, dass
- nichts anderes ist als ein -Vektorraum zusammen mit einem Gruppenhomomorphismus .
- ein -Modulhomomorphismus eine -lineare Abbildung ist, für die zusätzlich für alle gilt.
Bemerkung: heißt dann eine Darstellung von . Solche Darstellungen sind oft einfacher zu handhaben als und man kann mit Hilfe von oft hilfreiche Erkenntnisse über selbst gewinnen.
Aufgabe (2 Punkte)
Wir betrachten die kommutativen Monoide und . Zeige, dass ein Monoidhomomorphismus von nach eindeutig durch eine Matrix (mit Spalten und Zeilen) mit Einträgen aus bestimmt ist.
Wie sieht die zugehörige Spektrumsabbildung aus?