Zum Inhalt springen

Kurs:Analysis/Teil II/17/Klausur/kontrolle

Aus Wikiversity


Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Punkte 3 3 2 3 3 5 3 5 2 4 7 5 6 5 3 5 64








Ergänze die folgende Tabelle, in der Winkel in verschiedenen Maßeinheiten miteinander in Bezug gesetzt werden. Die Prozentangabe bezieht sich auf den Vollkreis.

Grad Bogenmaß Prozent



Beweise den Satz über zusammenhängende Teilmengen unter einer stetigen Abbildung.



Bestimme die Ableitung der Kurve



Beweise die Mittelwertabschätzung für differenzierbare Kurven.



Wir betrachten das lineare Differentialgleichungssystem

Zeige, dass die Lösung des zugehörigen Anfangswertproblems mit der Anfangsbedingung

durch

gegeben ist.



Löse das Anfangswertproblem

durch einen Potenzreihenansatz bis zur Ordnung .



Skizziere den Graphen der Funktion



Zeige für Polynomfunktionen

direkt, dass

gilt.



Beweise die Taylor-Formel für eine beliebig oft differenzierbare Funktion

in einem Punkt .



Finde ein reelles Polynom in zwei Variablen vom Grad , das die folgenden Eigenschaften besitzt. Ist die Lösung eindeutig?

  1. Es ist .
  2. Es ist .
  3. Es ist
  4. Es ist
  5. Es ist
  6. Es ist



Wir betrachten die Abbildung

  1. Bestimme die Jacobi-Matrix zu in einem Punkt .
  2. Berechne die Jacobi-Determinante von in einem Punkt .
  3. Begründe, dass in einer offenen Umgebung des Punktes einen Diffeomorphismus beschreibt.
  4. Bestimme die Jacobi-Matrix der Umkehrabbildung im Punkt .



Es sei offen und

eine stetig differenzierbare Abbildung, die im Punkt ein surjektives totales Differential besitze. Es sei ein Vektor des Tangentialraumes an die Faser zu durch . Zeige, dass es eine stetig differenzierbare Kurve

(für ein geeignetes ) mit und mit

gibt.



Es sei eine abgeschlossene sternförmige Menge und es sei die Menge aller Punkte, bezüglich der sternförmig ist. Zeige, dass abgeschlossen ist.



Sie sind Lehrer/in an einem Gymnasium und wurden soeben zur/m Beauftragten zur Förderung besonders begabter Schüler und Schülerinnen eingesetzt. Die Förderung soll sich auf Analysis beziehen. Welches Konzept (Thema, Idee, Begriffsbildung, ...) der Analysis 2 halten Sie dafür für geeignet? Inwiefern denken Sie, dass dieses Konzept zwar für den normalen Unterricht nicht geeignet ist, für das angesprochene Zielpublikum aber doch?