Kurs:Analysis (Osnabrück 2021-2023)/Teil I/Arbeitsblatt 3

Aus Wikiversity
Zur Navigation springen Zur Suche springen



Übungsaufgaben

Aufgabe

Zeige, und zwar allein unter Bezug auf Rechengesetze in , dass die durch

definierte Addition und Multiplikation auf den rationalen Zahlen wohldefiniert ist, und dass die Assoziativität, die Kommutativität und das Distributivgesetz gelten.


Aufgabe

Es seien Elemente in einem Körper, wobei und nicht seien. Beweise die folgenden Bruchrechenregeln.

Gilt die zu (8) analoge Formel, die entsteht, wenn man die Addition mit der Multiplikation vertauscht, also

Zeige, dass die „beliebte Formel“

nicht gilt.


Aufgabe

Zeige, dass in einem Körper das „umgekehrte Distributivgesetz“, also

nicht gilt.


Aufgabe

Beschreibe und beweise Regeln für die Addition und die Multiplikation von geraden und ungeraden ganzen Zahlen. Man definiere auf der zweielementigen Menge

eine „Addition“ und eine „Multiplikation“, die diese Regeln „repräsentieren“.


Aufgabe

Zeige, dass die einelementige Menge alle Körperaxiome erfüllt mit der einzigen Ausnahme, dass ist.


Aufgabe

Es sei ein Körper. Zeige, dass man jeder natürlichen Zahl ein Körperelement zuordnen kann, so dass das Nullelement in und das Einselement in ist und so dass

gilt. Zeige, dass diese Zuordnung die Eigenschaften

besitzt.

Erweitere diese Zuordnung auf die ganzen Zahlen und zeige, dass die angeführten strukturellen Eigenschaften ebenfalls gelten.


Aufgabe

Besitzen Sie eine geometrische Intuition zur Addition von zwei gegebenen Zahlen auf der reellen Zahlengeraden?

Besitzen Sie eine geometrische Intuition zur Multiplikation von zwei gegebenen Zahlen auf der reellen Zahlengeraden?


Aufgabe

Skizziere den Graphen der reellen Addition

und den Graphen der reellen Multiplikation


Aufgabe

Es sei ein Körper mit . Zeige, dass für die Beziehung

gilt.


Aufgabe *

Zwei Personen, und , liegen unter einer Palme, besitzt Fladenbrote und besitzt Fladenbrote. Eine dritte Person kommt hinzu, die kein Fladenbrot besitzt, aber Taler. Die drei Personen werden sich einig, für die Taler die Fladenbrote untereinander gleichmäßig aufzuteilen. Wie viele Taler gibt an und an ?


Aufgabe *

Die Partei „Zukunft für alle“ hat zwei Ziele.

  1. Millionäre entschädigungslos enteignen.
  2. Ein bedingungsloses monatliches Grundeinkommen von Euro für jeden Erwachsenen.

Hans hat mit Geld nichts am Hut, er ist jetzt gerade geworden und lebt allein auf einem kleinen Bauernhof als Selbstversorger, ohne Einnahmen, ohne Ausgaben, und das soll in seinem Leben auch so bleiben. Vorausgesetzt, das Parteiprogramm wird Gesetz, wie alt muss Hans (in Jahren und Monaten) werden, bis er enteignet wird?


Aufgabe

Man gebe die Antworten als Bruch (bezogen auf das angegebene Vergleichsmaß): Um wie viel ist eine Dreiviertelstunde länger als eine halbe Stunde, und um wie viel ist eine halbe Stunde kürzer als eine Dreiviertelstunde?


Aufgabe

Man erläutere die Uhrzeitangaben „halb fünf“, „viertel fünf“, „drei viertel fünf“. Was würde „ein sechstel fünf“ und „drei siebtel fünf“ bedeuten?


Aufgabe

Es sei ein Körper und seien Elemente aus . Beweise die folgenden Potenzgesetze für natürliche Exponenten .


Aufgabe *

Es sei ein Körper und seien Elemente aus . Beweise die folgenden Potenzgesetze für ganzzahlige Exponenten . Dabei darf man die entsprechenden Gesetze für Exponenten aus sowie die Tatsachen, dass das Inverse des Inversen wieder das Ausgangselement ist und dass das Inverse von gleich ist, verwenden.


Aufgabe

Die Folge , sei rekursiv durch

definiert. Zeige, dass für

gilt.


Aufgabe

Beweise durch Induktion die folgende Formel.


Aufgabe *

Heinz-Peter schaut am Morgen in den Spiegel und entdeckt fünf Pickel auf seiner Stirn. Diese müssen alle ausgedrückt werden, wobei zwei Pickel so nah beieinander liegen, dass sie unmittelbar hintereinander behandelt werden müssen. Wie viele Reihenfolgen gibt es, die Pickel auszudrücken?


Aufgabe *

Vor einem Fußballspiel begrüßt jeder der elf Spieler einer Mannschaft jeden Spieler der anderen Mannschaft, jeder Spieler begrüßt die vier Unparteiischen und diese begrüßen sich alle untereinander. Wie viele Begrüßungen finden statt?


Aufgabe *

Zeige, dass die Binomialkoeffizienten die rekursive Beziehung

erfüllen.


Aufgabe

Zeige, dass die Binomialkoeffizienten natürliche Zahlen sind.


Aufgabe *

Es sei eine -elementige Menge. Zeige, dass die Anzahl der -elementigen Teilmengen von gleich dem Binomialkoeffizienten

ist.


Aufgabe

Beweise die Formel




Aufgaben zum Abgeben

Aufgabe (2 Punkte)

Zeige für einen Körper die folgenden Eigenschaften.

(1) Für jedes ist die Abbildung

bijektiv.

(2) Für jedes , , ist die Abbildung

bijektiv.


Aufgabe (6 Punkte)

Beweise das allgemeine Distributivgesetz für einen Körper.


Aufgabe (4 Punkte)

Wir versehen die Menge mit den beiden Operationen

und


Zeige durch möglichst wenige Rechnungen, dass mit diesen Verknüpfungen zu einem Körper wird.


Aufgabe (3 Punkte)

Zeige, dass die „Rechenregel“

bei (und ) niemals gilt. Man gebe ein Beispiel mit , wo diese Regel gilt.


Aufgabe (4 Punkte)

Wir betrachten die Menge

mit den beiden ausgezeichneten Elementen

der Addition

und der Multiplikation

Zeige, dass mit diesen Operationen ein Körper ist.


Aufgabe (3 Punkte)

Beweise die Formel



<< | Kurs:Analysis (Osnabrück 2021-2023)/Teil I | >>

PDF-Version dieses Arbeitsblattes

Zur Vorlesung (PDF)