Zum Inhalt springen

Kurs:Grundkurs Mathematik (Osnabrück 2022-2023)/Teil I/Arbeitsblatt 9/kontrolle

Aus Wikiversity



Die Pausenaufgabe

Erstelle eine Liste der Quadratzahlen bis .




Übungsaufgaben

Finde zwei natürliche Zahlen, deren Summe und deren Produkt ist.



Wie oft sagt man „bitte“, wenn man dreimal „bitte, bitte, bitte“ sagt.



Bauer Ernst legt einen Kartoffelacker mit Reihen an. Pro Reihe setzt er Setzkartoffeln der Sorte Sieglinde. Diese Sorte ergibt pro Setzkartoffel einen Ertrag von Kilogramm. Wie hoch wird seine Ernte ausfallen?



Berechne

ohne auf andere Darstellungsformen der natürlichen Zahlen Bezug zu nehmen. Insbesondere soll das Ergebnis als Strichfolge vorliegen.



Berechne

ohne auf andere Darstellungsformen der natürlichen Zahlen Bezug zu nehmen. Insbesondere soll das Ergebnis als Strichfolge vorliegen.



Berechne allein mit den in Satz 9.3 und Satz 8.12 fixierten Rechenregeln.



In der Klasse gibt es vier Reihen mit je acht Sitzplätzen, die alle besetzt sind. Vorne stehen Frau Maier-Sengupta und Herr Lutz. Frau Maier Sengupta zählt die Kinder durch, wobei sie reihenweise von (zuerst) links nach rechts und (dann) von vorne nach hinten durchzählt. Herr Lutz zählt die Kinder von rechts hinten nach links vorne, wobei er zuerst die ganz rechts sitzenden Kinder durchzählt u.s.w.

  1. Welche Nummer bekommt dasjenige Kind, das von Frau Maier-Sengupta die Nummer bekommt, von Herrn Lutz?
  2. Welche Nummer bekommt dasjenige Kind, das von Herrn Lutz die Nummer bekommt, von Frau Maier-Sengupta?
  3. Welche Nummer bekommt das Kind, das in der dritten Reihe von vorne auf dem sechsten Stuhl von links sitzt, von den beiden Lehrkräften?



Erstelle das kleine Einmaleins im Zweiersystem.



Erstelle das kleine Einmaleins im Dreiersystem.



Erstelle das kleine Einmaleins im Vierersystem.


Man kann Satz 9.3 auch mit vertauschten Rollen formulieren.


Beweise den Satz, dass es auf den natürlichen Zahlen genau eine Verknüpfung

gibt, die

erfüllt.



Wir besprechen eine Variante des zweiten Beweises zu Satz 9.3. Es seien positive natürliche Zahlen.

  1. Zeige, dass

    eine bijektive Abbildung ist.

  2. Bringe diese Überlegung mit Aufgabe 2.17 in Verbindung.
  3. Bringe diese Überlegung mit dem Stellenwertsystem zur Basis in Verbindung.



Welches Problem ergibt sich, wenn man Lemma 9.5 durch Induktion über beweisen möchte?



Angenommen, wir würden für die Multiplikation die Anzahl der Produktmenge als Ausgangspunkt (also als Definition) nehmen. Wie wären bei dieser Vorgehensweise die Aussagen Lemma 9.2, Lemma 9.4 und Lemma 9.5 zu beweisen?



Man mache sich klar, dass die in der Vorlesung besprochenen Zugänge zur Multiplikation (also über das mehrfache addieren und über die Anzahl der Produktmenge) nicht tragfähig sind für die Multiplikation in , in und in .



Berechne das Matrizenprodukt



Welche Ziffern treten im Dezimalsystem als Endziffern von Quadratzahlen auf?



Bestimme die folgenden Potenzen.

  1. Die dritte Potenz der Vier.
  2. Die vierte Potenz der Drei.
  3. Die siebte Potenz der Fünf.
  4. Die neunte Potenz der Zehn.



Erstelle das „kleine Einshocheins“. Kann man das allgemeine Potenzieren darauf irgendwie zurückführen?



Es sei . Zeige, wie man mit vier Multiplikationen berechnen kann.



Aufgabe Aufgabe 9.22 ändern

Zeige, dass für das Potenzieren die folgenden Rechenregeln gelten (dabei seien und ).



Berechne

ohne auf andere Darstellungformen der natürlichen Zahlen Bezug zu nehmen. Insbesondere soll das Ergebnis als Strichfolge vorliegen.



In der Schule wird Potenzrechnung durchgenommen und es geht um die Frage, ob

ist. Als Gründe, dass dies gelten müsste, werden angeführt:

  1. Es gilt ja auch und , warum sollte das jetzt plötzlich nicht mehr gelten?
  2. Das wäre gut, wenn das gelten würde, dann könnte man die kleinere Zahl immer oben hinschreiben und es wäre einfacher auszurechnen.
  3. Wenn man beispielsweise und nimmt, so ist

    warum sollte das für andere Zahlen nicht auch gelten?



Zeige, dass das Potenzieren auf den positiven natürlichen Zahlen, also die Zuordnung

weder kommutativ noch assoziativ ist. Besitzt diese Verknüpfung ein neutrales Element?



Erstelle eine rekursive Beziehung für das Potenzieren , wobei den Nachfolger von bezeichnet. Gibt es auch eine rekursive Beziehung für ?



Zeige, dass für positive natürliche Zahlen die Beziehung

gilt.



Bestätige die folgenden Identitäten.



Ist die Abbildung

injektiv oder nicht?


Die folgende Aufgabe liefert eine Anzahlinterpretation für Potenzen.


Aufgabe Aufgabe 9.30 ändern

Es sei eine endliche Menge mit und eine Menge mit Elementen. Zeige, dass die Menge aller Abbildungen von nach genau Elemente besitzt.



Es sei eine -elementige Menge. Wie viele Verknüpfungen gibt es auf ?



Gabi Hochster überlegt sich: „Die Addition bedeutet, -mal den Nachfolger von nehmen, bedeutet, -mal mit sich selbst zu addieren, bedeutet, -mal mit sich selbst zu multiplizieren. Dies kann man doch eigentlich unendlich weitermachen, wobei man allerdings auf die Klammerungen achten muss. Also: bedeutet, -mal mit sich selbst zu potenzieren (Anzahl der Operanden, nicht der Operationen), wobei Rechtsklammerung gelte, bedeutet, -mal mit sich selbst die -Operation durchzuführen, u.s.w. Am besten nennen wir diese Verknüpfungen systematisch . “

  1. Berechne , , , ... .
  2. Berechne , , , ... .
  3. Berechne .
  4. Berechne .
  5. Berechne .
  6. Was ist für jedes ?




Aufgaben zum Abgeben

Berechne allein mit den in Satz 9.3 und Satz 8.12 fixierten Rechenregeln.



Erstelle das kleine Einmaleins im Fünfersystem.



Betrachte die Abbildung

  1. Ist injektiv?
  2. Ist surjektiv?
  3. Was ist das minimale mit der Eigenschaft, dass unter der Abbildung

    alle Zahlen zwischen und im Bild liegen (also erreicht werden).



Es sei . Zeige durch Induktion die Gleichheit



Aufgabe (8 (1+1+2+2+2) Punkte)Referenznummer erstellen

Die modische Winterjacke „Nungiduluxe“ wird in den Größen und in den Farben pink, türkis, lavendel, anthrazit, weinrot, ochsenblut, luisenblau und tschitscheringrün angeboten. Ferner gibt es die Ausführung mit Reißverschluss, mit einfachen Knöpfen und mit einer Doppelknopfreihe, sowie mit und ohne Kapuze.

  1. Beschreibe die Menge der möglichen Nungiduluxe-Jacken als eine Produktmenge.
  2. Wie viele Nungiduluxe-Jacken gibt es?
  3. Der Grundpreis der Jacke beträgt Euro, für die Größen und wird ein Aufschlag von Euro, für die Doppelknopfreihe wird ein Aufschlag von Euro und für die Kapuze wird ein Aufschlag von Euro verlangt. Wie viele Jacken gibt es, die mindestens Euro kosten?
  4. Lucy Sonnenschein möchte sich eine Nungiduluxe-Jacke kaufen. Sie hat Größe und möchte maximal Euro ausgeben. Anthrazit und weinrot kommt für sie nicht in Frage, und sie findet, dass Reißverschlüsse meistens klemmen. Da sie zufällig eine luisenblaue und eine tschitscheringrüne Mütze hat, wäre bei diesen Farbe die Kapuze unsinnig. Alle verbleibenden Möglichkeiten möchte sie gerne anprobieren. Wie viele Jacken bestellt sie?
  5. Die Bestellung von Lucy trifft auf folgende Schwierigkeiten: In der Größe sind die Farben pink und lavendel in jeder Ausführung ausverkauft und ochsenblut gibt es nur noch mit Reißverschluss. Türkis gibt es nur gleichzeitig mit Doppelknopfreihe und Kapuze und luisenblau nur mit der einfachen Knopfreihe. Wie viele Jacken werden geliefert?