Zum Inhalt springen

Kurs:Lineare Algebra/Teil I/32/Klausur

Aus Wikiversity



Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Punkte 3 3 1 2 0 5 0 0 4 2 3 0 5 3 0 4 0 0 35




Aufgabe * (3 Punkte)

Definiere die folgenden (kursiv gedruckten) Begriffe.

  1. Die Hintereinanderschaltung der Abbildungen

    und

  2. Ein Isomorphismus zwischen - Vektorräumen und .
  3. Der Spaltenrang einer - Matrix über einem Körper .
  4. Der Dualraum zu einem - Vektorraum .
  5. Die adjungierte Matrix zu einer quadratischen Matrix .
  6. Eine Fahne in einem - dimensionalen - Vektorraum .



Aufgabe * (3 Punkte)

Formuliere die folgenden Sätze.

  1. Der Satz über die Anzahl von Basiselementen.
  2. Der Satz über die Beziehung von Permutationen und Transpositionen.
  3. Der Satz von der kanonischen additiven Zerlegung für eine trigonalisierbare Abbildung.



Aufgabe * (1 Punkt)

Man finde eine äquivalente Formulierung für die Aussage „Frau Maier-Sengupta hat nicht alle Tassen im Schrank“ mit Hilfe einer Existenzaussage.



Aufgabe * (2 Punkte)

Die Biologin Hertha McGillen ist eine renommierte Forscherin über fliegende Fische. Zur Beobachtung hat ihr Team eine Drohne entwickelt, die sowohl oberhalb als auch unterhalb des Meeresspiegels fliegen kann. Bei einem Einsatz startet die Drohne vom Ausgangspunkt auf dem Schiff, der vier Meter oberhalb des Meeresspiegels liegt. Sie steigt zunächst drei Meter in die Höhe, fliegt dann elf Meter nach unten, dann einen Meter nach oben, dann zwei Meter nach unten, dann sechs Meter nach oben, dann fünf Meter nach unten, dann drei Meter nach oben, dann vier Meter nach unten, dann reißt der Funkkontakt ab.

Wie hoch bzw. tief ist die Drohne insgesamt von ihrem Ausgangspunkt aus geflogen und auf welcher Höhe unter- oder oberhalb des Meeresspiegels brach der Kontakt ab? Wie oft ist die Drohne ein- und wie oft aufgetaucht?



Aufgabe (0 Punkte)



Aufgabe * (5 Punkte)

Finde die komplexen Quadratwurzeln von

über den Ansatz



Aufgabe (0 Punkte)



Aufgabe (0 Punkte)



Aufgabe * (4 (3+1) Punkte)

  1. Zeige durch Induktion über , dass die Determinante einer -Matrix, deren sämtliche Einträge ganze Zahlen sind, ebenfalls eine ganze Zahl ist.
  2. Man gebe ein Beispiel für eine Matrix, deren sämtliche Einträge positive natürliche Zahlen sind und deren Determinante negativ ist.



Aufgabe * (2 Punkte)

Bestimme das Signum der im Bild gezeigten Permutation (die linke Hand repräsentiere den Definitionsbereich, die rechte Hand den Wertebereich. Der linke Daumen geht auf den kleinen Finger).



Aufgabe * (3 Punkte)

Löse das folgende lineare Gleichungssystem über dem Körper .



Aufgabe (0 Punkte)



Aufgabe * (5 (4+1) Punkte)

Es seien quadratische Matrizen über einem Körper , die zueinander in der Beziehung

mit einer invertierbaren Matrix stehen. Zeige, dass die Eigenwerte von mit den Eigenwerten zu übereinstimmen, und zwar

  1. direkt,
  2. mit Hilfe des charakteristischen Polynoms.



Aufgabe * (3 Punkte)

Bestimme die Eigenwerte, Eigenvektoren und Eigenräume zu einer ebenen Drehung zu einem Drehwinkel , , über .



Aufgabe (0 Punkte)



Aufgabe * (4 Punkte)

Bestimme die inverse Matrix zur Matrix

(über dem Körper der rationalen Funktionen ).



Aufgabe (0 Punkte)



Aufgabe (0 Punkte)