Äquivalenzrelation/Faseraspekt/Erreichbarkeit/Textabschnitt

Aus Wikiversity
Zur Navigation springen Zur Suche springen


Beispiel  

Es sei ein Körper. Wir sagen, dass zwei Zahlen „bis (eventuell) auf das Vorzeichen“ übereinstimmen, wenn oder ist. Dafür schreiben wir kurz

Dies ist eine Äquivalenzrelation. Dabei ist die Reflexivität unmittelbar klar, die Symmetrie erhält man, indem man die Gleichung mit multipliziert und ausnutzt. Ähnlich wird auch die Transitivität begründet. Diese Äquivalenzrelation lässt sich auch einfach im Sinne von Fakt beschreiben. Es ist nämlich genau dann, wenn gilt. Dabei ist die Hinrichtung klar. Für die Rückrichtung sei also . Bei ist auch und die Aussage gilt, seien also die Zahlen von verschieden. Durch Division durch erhält man

Wegen und Fakt sind aber und die einzigen Lösungen der Gleichung

in einem Körper, und somit ist und . In einem angeordneten Körper gilt darüber hinaus auch genau dann, wenn gilt. Es gibt also im Allgemeinen mehrere Funktionen, mit denen man eine Äquivalenzrelation erfassen kann.



Beispiel  

Es sei ein archimedisch angeordneter Körper. Wir betrachten die Gaußklammer auf , also die Abbildung

Eine Zahl wird also auf die größte ganze Zahl abgebildet, die kleiner oder gleich ist (die „Vorkommazahl“, falls die Zahl positiv ist[1]). Dabei wird das gesamte ganzzahlige einseitig offene Intervall

auf abgebildet. Bezüglich dieser Abbildung sind also zwei Zahlen genau dann äquivalent, wenn sie im gleichen ganzzahligen Intervall liegen.

Statt dem ganzzahligen Anteil kann man auch den (nichtnegativen) Bruchanteil (bei positiven Zahlen die „Nachkommazahl“) betrachten. Das ist die Abbildung

Unter der durch diese Abbildung definierten Äquivalenzrelation sind zwei Zahlen genau dann gleich, wenn sie den gleichen Bruchanteil besitzen, und das ist genau dann der Fall, wenn ihre Differenz eine ganze Zahl ist.

Wenn man rationale Zahlen als gemischte Brüche schreibt, so geht es um die Frage, ob der ganzzahlige Anteil oder ob der Bruchanteil übereinstimmt.


Unter der Äquivalenzrelation „erreichbar auf dem Landweg“ sind Inseln und Kontinente die Äquivalenzklassen.


Beispiel  

Es sei eine Situation gegeben, wo gewisse Orte (oder Objekte) von gewissen anderen Orten aus erreichbar sind oder nicht. Die Erreichbarkeit kann dabei durch die Wahl eines Verkehrsmittels oder durch eine abstraktere (Bewegungs)-Vorschrift festgelegt sein. Solche Erreichbarkeitsrelationen liefern häufig eine Äquivalenzrelation. Dass ein Ort von sich selbst aus erreichbar ist, sichert die Reflexivität. Die Symmetrie der Erreichbarkeit besagt, dass wenn man von nach kommen kann, dass man dann auch von nach kommen kann. Das ist nicht für jede Erreichbarkeit selbstverständlich, für die meisten aber schon. Die Transitivität gilt immer dann, wenn man die Bewegungsvorgänge hintereinander ausführen kann, also zuerst von nach und dann von nach . Wenn erreichbar beispielsweise dadurch gegeben ist, dass man auf dem Landweg von einem Ort zu einem anderen kommen kann, so sind zwei Ortspunkte genau dann äquivalent, wenn sie auf der gleichen Insel (oder dem gleichen Kontinent) liegen.



Beispiel  

Es sei fixiert. Wir betrachten auf die Äquivalenzrelation , bei der zwei Zahlen als äquivalent betrachtet werden, wenn ihre Differenz ein Vielfaches von ist. Zwei Zahlen sind also zueinander äquivalent, wenn man von der einen Zahl zu der anderen durch Sprünge der Sprungweite gelangen kann. Unter Verwendung der Division mit Rest bedeutet dies, dass zwei Zahlen zueinander äquivalent sind, wenn sie bei Division durch den gleichen Rest ergeben.


Mit Hilfe der Abbildung , die jeder ganzen Zahl den Rest bei Division durch zuordnet, kann man das vorstehende Beispiel auch direkt mit Fakt erfassen.


Beispiel  

Visualisierung des Beispiels

Wir betrachten die Produktmenge , die wir uns als ein Punktgitter vorstellen. Wir fixieren die Sprünge (man denke an Springmäuse, die alle diese Sprünge ausführen können)

und sagen, dass zwei Punkte äquivalent sind, wenn man ausgehend von den Punkt mit einer Folge von solchen Sprüngen erreichen kann. Dies ist eine Äquivalenzrelation (dafür ist entscheidend, dass bei den Sprüngen auch der entgegengesetzte Sprung dazu gehört). Typische Fragestellungen sind: Wie kann man äquivalente Felder charakterisieren, wie entscheiden, ob zwei Felder äquivalent sind oder nicht?



Beispiel  

Es sei die Menge aller Dreiecke (in der reellen Ebene). Zwei Dreiecke und heißen kongruent, wenn es eine (eventuell uneigentliche) Bewegung gibt, die das eine Dreieck in das andere Dreieck überführt. Eine Bewegung soll dabei die Längen und die Winkel erhalten. Eine solche Bewegung setzt sich zusammen aus einer Verschiebung, einer Achsenspiegelung und einer Drehung[2] (in beliebiger Reihenfolge, beliebig oft angewendet). Die Kongruenz von Dreiecken ist eine Äquivalenzrelation. Ein Dreieck ist zu sich selbst kongruent, da es durch die identische Bewegung in sich überführt wird. Wenn durch eine bestimmte Bewegung in überführt wird, so wird durch die entgegengesetzte Bewegung, also , das zweite Dreieck in überführt. Die Kongruenz ist also symmetrisch. Wenn drei Dreiecke gegeben sind, wobei zu und zu kongruent sind, so gibt es eine Bewegung , die in überführt, und eine Bewegung , die in überführt. Dann hat die Gesamtbewegung die Eigenschaft, dass sie insgesamt in überführt. Ebenso ist die eigentliche Kongruenz, bei der nur eigentliche Bewegungen (also keine Achsenspiegelungen) erlaubt sind, eine Äquivalenzrelation.


  1. Mit dieser Formulierung muss man bei negativen Zahlen vorsichtig sein. Die Zahl besitzt die Gaußklammer und den Bruchanteil .
  2. Diese Abbildungen sind aus der Schule bekannt.