Eigentheorie/Kern/Linear unabhängig/Textabschnitt
Es sei ein Körper, ein -Vektorraum und
eine lineare Abbildung.
Dann ist
Insbesondere ist genau dann ein Eigenwert von , wenn nicht injektiv ist.
Beweis
Allgemeiner gilt die folgende Charakterisierung.
Es sei . Dann ist genau dann, wenn ist, und dies ist genau bei der Fall, was man als schreiben kann.
Neben dem Eigenraum zu , der der Kern der linearen Abbildung ist, sind die Eigenwerte und besonders interessant. Der Eigenraum zu besteht aus allen Vektoren, die auf sich selbst abgebildet werden. Auf diesem Untervektorraum wirkt also die Abbildung wie die Identität, man nennt ihn den Fixraum. Der Eigenraum zu besteht aus allen Vektoren, die auf ihr Negatives abgebildet werden. Auf diesem Untervektorraum wirkt die Abbildung wie eine Punktspiegelung.
Es sei ein Körper, ein -Vektorraum und
eine lineare Abbildung. Es seien Eigenvektoren zu (paarweise) verschiedenen Eigenwerten .
Dann sind linear unabhängig.
Wir beweisen die Aussage durch Induktion nach . Für ist die Aussage richtig. Es sei die Aussage also für weniger als Vektoren bewiesen. Betrachten wir eine Darstellung der , also
Wir wenden darauf an und erhalten einerseits
Andererseits multiplizieren wir die obige Gleichung mit und erhalten
Die so entstandenen Gleichungen zieht man voneinander ab und erhält
Aus der Induktionsvoraussetzung folgt, dass alle Koeffizienten , , sein müssen. Wegen folgt für und wegen ist dann auch .
Es sei ein Körper und es sei ein endlichdimensionaler -Vektorraum. Es sei
eine lineare Abbildung.
Dann gibt es maximal viele Eigenwerte zu .