Zum Inhalt springen

Gitter/Komplexe Zahlen/Streckungsäquivalent/Einführung/Textabschnitt

Aus Wikiversity

Zu je zwei Gittern sind die Quotienten und als topologische Gruppen isomorph, es handelt sich ja um den topologischen Torus . Auch als reelle Lie-Gruppen sind sie stets diffeomorph. Als komplexe Mannigfaltigkeiten bzw. als komplexe Liegruppen sind aber und in aller Regel verschieden. Dies bedeutet, dass die eine topologische Gruppe unterschiedliche komplexe Strukturen besitzt.


Zwei Gitter heißen streckungsäquivalent, wenn es eine komplexe Zahl mit gibt.

Dabei ist natürlich , die Streckungsäquivalenz ist eine Äquivalenzrelation. Wenn das eine Gitter durch die reelle Basis und das andere Gitter durch gegeben ist, so kann man durch Multiplikation mit

ein zu streckungsäquivalentes Gitter

finden, das mit im ersten Erzeuger übereinstimmt. Damit sind die Streckungsmöglichkeiten aufgebraucht. Allerdings kann man aus

nicht schließen, dass und nicht zueinander streckungsäquivalent sind, da es ja um die Gleichheit von Gittern und nicht um die Gleichheit von Gitterbasen geht, d.h. man kann noch mit einer Matrix aus multiplizieren.



Jedes Gitter in

ist streckungsäquivalent zu einem Gitter der Form mit .

Sei . Da eine reelle Basis bilden, ist insbesondere . Mit erhält man das streckungsäquivalente Gitter

Sei . Diese Zahl ist nicht reell, da andernfalls eine reelle lineare Abhängigkeit zwischen und vorliegen würde. Also besitzt einen imaginären Anteil. Wenn dieser in der unteren Halbebene liegt, so ersetzen wir durch und erhalten eine Basis mit den verlangten Eigenschaften.


Es bleibt noch zu fragen, wann zwei Gitter, die beide durch eine Basis der Form bzw. mit gegeben sind, übereinstimmen.



Zwei Gitter der Form und mit

sind genau dann streckungsäquivalent, wenn es ein mit

gibt.

Die Streckungsbedingung zusammen mit der Basisbeschreibung aus Fakt führt auf die Bedingung

mit und . Daher muss

sein und die Bedingung wird zu

Es ist

Der Nenner ist reell und positiv, der Zähler ist

Hierbei sind die drei Summanden links reell. Somit gehört genau dann zu , wenn das Vorzeichen vor positiv ist, und dies ist genau dann der Fall, wenn die Matrix die Determinante besitzt.


Aufgrund von Fakt ist es naheliegend, die folgende Wirkungsweise der Gruppe der speziellen ganzzahligen -Matrizen auf der oberen Halbebene zu betrachten.


Die Gruppenoperation der Gruppe auf der oberen Halbebene durch

heißt Modulsubstitution.

Es handelt sich also um die Wirkung von speziellen gebrochen-linearen Funktionen auf der oberen Halbebene. Dass das Ergebnis einer solchen Substitution (man spricht auch von einer speziellen Möbiustransformation) wieder in der oberen Halbebene liegt wurde in Fakt mitbewiesen. Eine Gruppenoperation liegt aufgrund von Fakt vor. Die spezielle lineare Gruppe nennt man in diesem Zusammenhang auch Modulgruppe. Da die negative Einheitsmatrix als Modulsubstitution trivial operiert, betrachtet man zumeist die Restklassengruppe als die Modulgruppe.

Die Wirkungsweise der beiden Matrizen und , die nach Fakt die Gruppe der speziellen ganzzahligen Matrizen erzeugen, bei der Modulsubstitution ist

und


Der Fundamentalbereich der Gruppenoperation durch Modulsubstitution ist grau. Im Bild ist nicht erkennbar, inwiefern die Randpunkte dazu gehören oder nicht.



Es sei

Dann ist ein Fundamentalbereich für die Modulsubstitution auf der oberen Halbebene.

Zu und ist

Dies bedeutet, dass zwischen den Imaginärteilen von und von die Beziehung

besteht. Für folgt daraus ferner, dass die Menge , , ein Maximum besitzt. Es sei entsprechend gewählt. Wir wählen ferner derart, dass der Realteil von

zwischen und liegt, was nach Bemerkung möglich ist. Der Betrag von ist , andernfalls würde sich durch ein Widerspruch zur Wahl von ergeben. Somit gelangt man in den Abschluss von . Sei . Wenn der Realteil von gleich ist, so kann man durch Anwendung von erreichen, dass ist. Die Elemente auf dem rechten Kreisteilbogen kann man durch eine Anwendung von auf den linken Kreisteilbogen schicken. Daher wird jedes Element von durch ein Element aus repräsentiert.

Es ist noch zeigen, dass dieses Element eindeutig ist. Nach Fakt genügt es zu zeigen, dass für und das Element liegt. Es sei also und

Wir nehmen an, dass gehört und müssen zeigen, dass die Identität oder das Negative der Identität ist. Da die Rollen von und vertauscht werden können, können wir annehmen, dass

gilt. Wie oben gezeigt gilt für den Imaginärteil

also ist

Aus folgt . Es sei zunächst . Dann ist , wobei wir direkt annehmen können, und es liegt eine Scherung vor, die wegen des Realteiles trivial sein muss. Es sei also , wobei wir durch Multiplikation mit annehmen können, dass ist. Aus und folgt . Die Determinante ergibt . Dann ist . Der Imaginärteil dieser Zahl ist , also muss ein Punkt der Sphäre und sein. Von und liegt aber genau ein Element auf dem fixierten Kreissegment.



Jedes Gitter in

ist streckungsäquivalent zu einem Gitter der Form mit einem eindeutig bestimmten , wobei den Fundamentalbereich zur Modulsubstitution bezeichnet.

Dies folgt aus Fakt, Fakt und Fakt.