Gruppe/Operation auf Integritätsbereich/Quotientenkörper/Textabschnitt

Aus Wikiversity


Proposition  

Es sei eine Gruppe, die auf einem Integritätsbereich als Gruppe von Ringautomorphismen operiere. Dann gelten folgende Eigenschaften.

  1. Der Invariantenring ist ein Integritätsbereich.
  2. Die Operation induziert eine Operation von auf dem Quotientenkörper als Gruppe von Körperautomorphismen.
  3. Es ist .
  4. Es ist

Beweis  

(1) ist wegen klar.
(2). Es sei der Quotientenkörper von . Zu jedem setzt sich der Ringautomorphismus aufgrund der universellen Eigenschaft der Nenneraufnahme zu einem Körperautomorphismus fort.
(3). Ein Element aus dem Quotientenkörper hat die Form mit invarianten Elementen . Es ist also insbesondere invariant unter der induzierten Operation auf . Daher gilt .
(4). Die Inklusion ist direkt klar. Die andere Inklusion ergibt sich, da die Operation von auf eingeschränkt auf die ursprüngliche Operation ist. Wenn also ist und aufgefasst in invariant ist, so ist es überhaupt invariant.



Bei einer endlichen Gruppe gilt in Fakt  (3) sogar Gleichheit, wie die folgende Aussage zeigt.


Lemma  

Es sei eine endliche Gruppe, die auf einem Integritätsbereich als Gruppe von Ringautomorphismen operiere.

Dann ist

Beweis  

Die Inklusion gilt nach Fakt  (3) für jede Gruppe. Zum Beweis der Umkehrung seien , , mit gegeben. Wir betrachten

Dann gelten in die Identitäten

Nach Voraussetzung ist der Bruch und in dieser Darstellung offenbar auch der Nenner (siehe Aufgabe) invariant. Also muss auch der Zähler invariant sein und somit ist .



Beispiel  

Es sei ein unendlicher Körper. Wir betrachten auf die Operation von durch skalare Multiplikation. Zu gehört also der durch gegebene -Algebrahomomorphismus. Der Invariantenring dazu ist , also ein Körper. Der Quotientenkörper von ist der Funktionenkörper in zwei Variablen. Sein Invariantenring unter der Operation ist , also der Funktionenkörper in einer Variablen. In dieser Situation gilt also