Hilbertraum/Orthonormalsystem/Ausgleichsgerade/Einführung/Textabschnitt

Aus Wikiversity


Definition  

Es sei ein -Vektorraum mit Skalarprodukt . Eine Familie von Vektoren , , von heißt Orthonormalsystem, wenn

gilt.

Zu einem gegebenen Orthonormalsystem , , und einem Vektor spielen die Koeffizienten eine wichtige Rolle, man spricht von den Fourierkoeffizienten des Vektors bezüglich des Systems, wobei diese Sprechweise insbesondere im Kontext von Fourierreihen verwendet wird. Eine wichtige Frage ist, in welcher Beziehung zu steht, wobei bei unendlich zuerst zu klären ist, in welchem Sinne eine solche unendlich Summe verstanden werden kann. Im endlichen Fall haben wir folgende Beschreibung, auf die man weitere Resultate zurückführen kann.



Lemma  

Es sei ein -Vektorraum mit einem Skalarprodukt , sei , , ein endliches Orthonormalsystem mit dem davon erzeugten Untervektorraum .

Dann gilt für die orthogonale Projektion

Beweis  

Es sei

es ist nach Fakt lediglich zu zeigen, dass orthogonal zu den ist. Dies ergibt sich direkt aus



Beispiel  

Es sei eine endliche Menge und

die Menge der -wertigen Funktionen auf , versehen mit dem Standardskalarprodukt. Eine Funktion kann einfach durch eine vollständige Wertetabelle beschrieben werden. Es kann aber auch sinnvoll sein, die Funktion durch eine Funktion aus einem vorgegebenen Untervektorraum zu approximieren. Dabei liefert das Skalarprodukt und die zugehörige orthogonale Projektion auf ein naheliegendes Hilfsmittel, um eine optimale Approximation zu finden. Nach Fakt ist diejenige Funktion, die unter allen Funktionen aus zu den minimalen Abstand besitzt, wobei der Abstand zu über das Skalarprodukt gegeben ist, also durch

Wenn , , eine Orthonormalbasis von ist, so ist

nach Fakt die beste Approximation. Das so bestimmte minimiert also die Summe der einzelnen Differenzquadrate, man spricht von der Methode der kleinsten Fehlerquadrate.

Eine typische Anwendung ist, wenn Messtellen repräsentiert, etwa , und Messergebnisse, die eventuell fehlerhaft sein können. Man weiß aus physikalischen Gründen, dass die Abhängigkeit einer gewissen Gesetzmäßigkeit gehorchen muss, beispielsweise ein linearer Zusammenhang sein muss oder als Flugbahn eines Planeten eine Ellipse sein muss oder ähnliches. Diese Gesetzmäßigkeit legt den (typischerweise niedrigdimensionalen) Untervektorraum fest, in dem nach einer optimalen Approximation gesucht wird, das den Messergebnissen möglichst nahe kommt.



Beispiel  

Von einer unbekannten Funktion sei der Datensatz gegeben und es sei bekannt, dass eine affin-lineare Funktion sein muss. Der Datensatz beruht auf Messungen, in denen Fehler und Ungenauigkeiten vorkommen können, die drei Punkte liegen nicht wirklich auf einer Geraden. Es wird nach der affin-linearen Funktion gesucht, die gut zu den Daten passt. Wir betrachten die Abbildung

die einem Parameterpaar , das die affin-lineare Funktion repräsentiert, die Auswertung an den drei Punkten zuordnet. Dabei ist eine injektive lineare Abbildung und das Bild ist ein zweidimensionaler Untervektorraum von . Diese Ebene steht senkrecht zum Vektor , eine Basis ist durch und gegeben (die unter von der Basis und des herrührt). Die optimale Approximation (im Sinne der euklidischen Norm bzw. im Sinne der kleinsten Fehlerquadrate) ist die orthogonale Projektion des Wertetupels auf die Ebene. Dies führt zum linearen Gleichungssystem

mit den Lösungen , und . Daher ist

Der entsprechende Punkt auf dem ist

Die beste Approximation ist also

Es ist , und .




Satz  

Es seien verschiedene reelle Zahlen, , und reelle Zahlen. Es sei und .

Dann ist die affin-lineare Funktion mit

und

die optimale lineare Approximation für den Datensatz

im Sinne der minimalen Fehlerquadrate.

D.h. die Summe der Fehlerquadrate wird für die angegebenen Koeffizienten und minimal.

Beweis  

Wir betrachten die Abbildung

Diese Abbildung ist linear und injektiv, da

und

linear unabhängig sind. Es sei

Es geht darum, die orthogonale Projektion von auf zu bestimmen. Der Vektor

ist normiert. Wegen

bildet

zusammen mit eine Orthonormalbasis von . Es entspricht der konstanten Funktion und der affin-linearen Funktion . Nach Fakt ist

dabei ist

und

Somit ist die optimale affin-lineare Funktion gleich

also ist

und


Den Graphen der approximierenden affin-linearen Funktion im vorstehenden Satz nennt man Ausgleichsgerade.


Beispiel  

In der Situation von Beispiel kommt man mit Fakt deutlich schneller ans Ziel. Es ist

und daher

und