Kurs:Analysis/Teil I/40/Klausur/kontrolle
Aufgabe | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Punkte | 3 | 3 | 1 | 1 | 3 | 2 | 5 | 3 | 1 | 2 | 3 | 4 | 6 | 9 | 4 | 2 | 4 | 3 | 5 | 64 |
Aufgabe * (3 Punkte)Referenznummer erstellen
Aufgabe * (3 Punkte)Referenznummer erstellen
Aufgabe * (1 Punkt)Referenznummer erstellen
Beurteile die Snookerweisheit „Ein Snookerspiel kann man in der ersten Session nicht gewinnen, aber verlieren“ vom logischen Standpunkt aus.
Aufgabe * (1 Punkt)Referenznummer erstellen
Winnetou und Old Shatterhand liegen nachts am Strand des Rio Pecos und halten ihre vom harten Tagesritt müden Füße in den Fluss. Dabei schauen sie in den Himmel und zählen Sternschnuppen. Winnetou sieht und Old Shatterhand sieht Sternschnuppen. Old Shatterhand sieht von den von Winnetou gesichteten Sternschnuppen nicht. Wie viele der Sternschnuppen, die von Old Shatterhand gesichtet wurden, sieht Winnetou nicht?
Aufgabe * (3 Punkte)Referenznummer erstellen
Beweise die Nichtnullteilereigenschaft für einen Körper .
Aufgabe * (2 Punkte)Referenznummer erstellen
Zeige, dass die Gleichung
in auch Lösungen besitzt.
Aufgabe * (5 Punkte)Referenznummer erstellen
Auf dem kürzlich entdeckten Planeten Trigeno lebt eine rechenbegabte Spezies. Sie verwenden wie wir die rationalen Zahlen mit „unserer“ Addition und Multiplikation. Sie verwenden ferner eine Art „Ordnung“ auf den rationalen Zahlen, die sie mit bezeichnen. Diese trigenometrische Ordnung stimmt mit unserer Ordnung überein, wenn beide Zahlen sind. Dagegen gilt bei ihnen
für jede rationale Zahl . Die renommierte Ethnomathematikerin Dr. Eisenbeis vermutet, dass dies damit in Zusammenhang steht, dass sie die als heilig verehren.
Zeige, dass die folgenden Eigenschaften erfüllt.
- Für je zwei Elemente gilt entweder oder oder .
- Aus und folgt (für beliebige ).
- Aus und folgt .
- Aus und folgt .
Welche Eigenschaft eines angeordneten Körpers erfüllt nicht?
Aufgabe * (3 Punkte)Referenznummer erstellen
Aufgabe * (1 Punkt)Referenznummer erstellen
Berechne die Gaußklammer
Aufgabe * (2 Punkte)Referenznummer erstellen
Begründe geometrisch, dass die Wurzeln , , als Länge von „natürlichen“ Strecken vorkommen.
Aufgabe * (3 Punkte)Referenznummer erstellen
Berechne von Hand die Approximationen im Heron-Verfahren für die Quadratwurzel von zum Startwert .
Aufgabe * (4 Punkte)Referenznummer erstellen
Es sei ein Körper und sei der Polynomring über . Es sei ein Polynom und . Zeige, dass genau dann eine Nullstelle von ist, wenn ein Vielfaches des linearen Polynoms ist.
Aufgabe * (6 Punkte)Referenznummer erstellen
Beweise den Zwischenwertsatz.
Aufgabe * (9 (1+2+3+3) Punkte)Referenznummer erstellen
In der folgenden Aufgabe sollen Personen in der Ebene so platziert werden, dass je zwei Personen zueinander einen Abstand von zumindest haben (alle Angaben beziehen sich auf Meter). Die Personen bzw. ihre Platzierung sind dabei durch einen Punkt gegeben.
- Zeige, dass man auf einem quadratischen -Platz Leute platzieren kann (Randpunkte sind erlaubt).
- Was ist falsch am folgenden Argument: „Auf einem -Platz kann man höchstens Leute platzieren. Zu jeder Person gehört nämlich ein Umkreis mit Radius , und zu verschiedenen Personen sind diese Kreise zueinander disjunkt. Zu jeder Person gehört also eine Fläche mit Flächeninhalt
.
Diese Flächen liegen ganz in der Gesamtfläche der Größe
.
Wegen
ist dies nicht möglich.“
- Zeige, dass man auf einem -Platz definitiv nicht Leute platzieren kann.
- Zeige, dass man auf einem -Platz Leute platzieren kann.
Aufgabe * (4 Punkte)Referenznummer erstellen
Beweise die Regel von l'Hospital.
Aufgabe * (2 Punkte)Referenznummer erstellen
Es seien
differenzierbare Funktionen und
mit . Zeige, dass man die Ableitung von als einen Bruch mit im Nenner schreiben kann.
Aufgabe * (4 Punkte)Referenznummer erstellen
Es sei
ein normiertes Polynom vom Grad . Charakterisiere durch eine Bedingung an die Koeffizienten die Eigenschaft, dass Wendepunkte besitzt.
Aufgabe * (3 Punkte)Referenznummer erstellen
Bestimme eine Stammfunktion zur Funktion ()
Aufgabe * (5 Punkte)Referenznummer erstellen
Beweise das Lösungsverfahren für inhomogene lineare gewöhnliche Differentialgleichungen in einer Variablen.