Kurs:Analysis (Osnabrück 2013-2015)/Teil II/Arbeitsblatt 41
- Übungsaufgaben
Finde einen zweidimensionalen Lösungsraum für die Differentialgleichung zweiter Ordnung
Löse damit das Anfangswertproblem
Wir betrachten die Differentialgleichung
mit der Anfangsbedingung . Bestimme zur Schrittweite die approximierenden Punkte gemäß dem Polygonzugverfahren. Bestimme insbesondere . Was passiert mit für ?
Bestimme alle Lösungen des linearen Differentialgleichungssystems
Bestimme alle Lösungen des linearen Differentialgleichungssystems
Bestimme alle Lösungen des linearen Differentialgleichungssystems
Bestimme alle Lösungen (für ) des linearen Differentialgleichungssystems
Bestimme alle Lösungen des linearen Differentialgleichungssystems
Es sei ein reelles Intervall und seien
differenzierbare Funktionen mit
für alle . Wir betrachten das lineare Differentialgleichungssystem
Zeige, dass sowohl als auch Lösungen des Differentialgleichungssystems sind.
- Aufgaben zum Abgeben
Aufgabe * (6 Punkte)
a) Schreibe ein Computerprogramm, das zu dem Vektorfeld aus Beispiel 41.5 zu einem Startzeitpunkt , einem Startpunkt und einer vorgegebenen Schrittweite die approximierenden Punkte berechnet.
b) Berechne mit diesem Programm die Punkte für
- , , , .
- , , , .
- , , , .
- , , , .
- , , , .
- , , , .
- , , , .
- , , , .
(Abzugeben ist lediglich Teil b), und zwar in einer leserfreundlichen Form.)
Aufgabe (5 (1+2+2) Punkte)
a) Übersetze das Anfangswertproblem zweiter Ordnung
in ein Differentialgleichungssystem erster Ordnung.
b) Bestimme mit dem Polygonzugverfahren zur Schrittweite die Näherungspunkte für dieses System.
c) Berechne den Wert des zugehörigen Streckenzuges an der Stelle .
Aufgabe (4 Punkte)
Bestimme alle Lösungen des linearen Differentialgleichungssystems
Aufgabe (8 (2+6) Punkte)
Wir betrachten das lineare Differentialgleichungssystem
- Erstelle eine Differentialgleichung in einer Variablen, die die Funktion zu einer Lösung erfüllen muss.
- Finde eine Lösung für aus Teil (1).
- Finde eine nichttriviale Lösung des Differentialgleichungssystems.
Aufgabe (4 Punkte)
Finde eine nichttriviale Lösung (für ) zum linearen Differentialgleichungssystem
mit Hilfe von Aufgabe 41.9.
Die für , , und ein definierte lineare Differentialgleichung
heißt Legendresche Differentialgleichung zum Parameter .
Aufgabe (5 Punkte)
Zeige, dass das -te Legendre-Polynom[1]
eine Lösung der Legendreschen Differentialgleichung zum Parameter ist.
- Fußnoten
- ↑ Hier bedeutet das hochgestellte die -te Ableitung.
<< | Kurs:Analysis (Osnabrück 2013-2015)/Teil II | >> |
---|