Kurs:Lineare Algebra/Teil I/2/Klausur/kontrolle
Aufgabe | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Punkte | 3 | 3 | 6 | 3 | 8 | 5 | 6 | 3 | 5 | 4 | 2 | 6 | 3 | 4 | 3 | 64 |
Aufgabe * (3 Punkte)Referenznummer erstellen
Aufgabe * (3 Punkte)Referenznummer erstellen
Aufgabe * (6 (2+4) Punkte)Referenznummer erstellen
Es sei
eine Abbildung.
a) Zeige, dass es eine Menge gibt und eine surjektive Abbildung
und eine injektive Abbildung
mit
b) Zeige, dass es eine Menge gibt und eine injektive Abbildung
und eine surjektive Abbildung
mit
Aufgabe * (3 Punkte)Referenznummer erstellen
Zwei Personen, und , liegen unter einer Palme, besitzt Fladenbrote und besitzt Fladenbrote. Eine dritte Person kommt hinzu, die kein Fladenbrot besitzt, aber Taler. Die drei Personen werden sich einig, für die Taler die Fladenbrote untereinander gleichmäßig aufzuteilen. Wie viele Taler gibt an und an ?
Aufgabe * (8 Punkte)Referenznummer erstellen
Beweise das Basisaustauschlemma.
Aufgabe * (5 Punkte)Referenznummer erstellen
Bestimme die Übergangsmatrizen und für die Standardbasis und die durch die Vektoren
gegebene Basis im .
Aufgabe * (6 (2+4) Punkte)Referenznummer erstellen
Es sei ein Körper, und seien - Vektorräume und
sei eine - lineare Abbildung.
a) Zeige, dass der Kern von ein Untervektorraum von ist.
b) Beweise das Injektivitätskriterium für eine lineare Abbildung.
Aufgabe * (3 Punkte)Referenznummer erstellen
Aufgabe * (5 Punkte)Referenznummer erstellen
Es sei eine quadratische Matrix, die man als
mit quadratischen Matrizen und schreiben kann. Zeige durch ein Beispiel, dass die Beziehung
im Allgemeinen nicht gilt.
Aufgabe * (4 Punkte)Referenznummer erstellen
Es sei ein Körper und sei der Polynomring über . Es sei ein Polynom und . Zeige, dass genau dann eine Nullstelle von ist, wenn ein Vielfaches des linearen Polynoms ist.
Aufgabe * (2 Punkte)Referenznummer erstellen
Aufgabe * (6 (2+3+1) Punkte)Referenznummer erstellen
Wir betrachten die lineare Abbildung
die bezüglich der Standardbasis durch die Matrix
beschrieben wird.
a) Bestimme das charakteristische Polynom und die Eigenwerte von .
b) Berechne zu jedem Eigenwert einen Eigenvektor.
c) Stelle die Matrix für bezüglich einer Basis aus Eigenvektoren auf.
Aufgabe * (3 Punkte)Referenznummer erstellen
Es sei ein Körper, ein - Vektorraum und
eine lineare Abbildung. Zeige, dass die durch
definierte Teilmenge von ein - invarianter Unterraum ist.
Aufgabe * (4 Punkte)Referenznummer erstellen
Man gebe ein Beispiel für zwei nilpotente lineare Abbildungen
derart, dass weder noch nilpotent sind.
Aufgabe * (3 Punkte)Referenznummer erstellen
Bestimme zur reellen Matrix
die jordansche Normalform. (Es muss keine Basis angegeben werden, bezüglich der jordansche Normalform vorliegt.)