Kurs:Mathematik für Anwender (Osnabrück 2011-2012)/Teil I/Arbeitsblatt 25

Aus Wikiversity
Zur Navigation springen Zur Suche springen



Aufwärmaufgaben

Aufgabe

Berechne das bestimmte Integral


In den folgenden Aufgaben, bei denen es um die Bestimmung von Stammfunktionen geht, ist jeweils ein geeigneter Definitionsbereich zu wählen.

Aufgabe *

Bestimme eine Stammfunktion für die Funktion


Aufgabe

Sei . Bestimme eine Stammfunktion für die Funktion


Aufgabe

Bestimme eine Stammfunktion für die Funktion


Aufgabe

Bestimme eine Stammfunktion für die Funktion


Aufgabe

Bestimme eine Stammfunktion für die Funktion


Aufgabe

Bestimme, für welche die Funktion

ein Maximum oder ein Minimum besitzt.


Aufgabe

Nach neuesten Studien zur Aufnahmefähigkeit von durchschnittlichen Studierenden wird die Aufmerksamkeitskurve am Tag durch

beschrieben. Dabei ist die Zeit in Stunden und ist die Aufnahmefähigkeit in Mikrocreditpoints pro Sekunde. Wann muss man eine ein einhalb stündige Vorlesung ansetzen, damit die Gesamtaufnahme optimal ist? Wie viele Mikrocreditpoints werden dann in dieser Vorlesung aufgenommen?


Aufgabe

Es sei ein reelles Intervall und es sei

eine stetige Funktion mit der Stammfunktion . Es sei eine Stammfunktion von und es seien . Bestimme eine Stammfunktion der Funktion


Aufgabe

Sei . Bestimme eine Stammfunktion der Funktion

unter Verwendung der Stammfunktion von und Satz 25.4.


Aufgabe

Bestimme eine Stammfunktion des natürlichen Logarithmus unter Verwendung der Stammfunktion seiner Umkehrfunktion.


Aufgabe

Es sei

eine bijektive, stetig differenzierbare Funktion. Man beweise die Formel für die Stammfunktion der Umkehrfunktion, indem man für das Integral

die Substitution durchführt und anschließend partiell integriert.


Aufgabe *

Berechne durch geeignete Substitutionen eine Stammfunktion zu


Aufgabe *

Berechne das bestimmte Integral zur Funktion

über .


Aufgabe *

Berechne das bestimmte Integral zur Funktion

über .




Aufgaben zum Abgeben

Aufgabe (3 Punkte)

Berechne das bestimmte Integral , wobei die Funktion durch

gegeben ist.


Aufgabe (3 Punkte)

Bestimme eine Stammfunktion für die Funktion


Aufgabe (2 Punkte)

Bestimme eine Stammfunktion für die Funktion


Aufgabe (3 Punkte)

Bestimme eine Stammfunktion für die Funktion


Aufgabe (4 Punkte)

Bestimme eine Stammfunktion für die Funktion


Aufgabe (4 Punkte)

Es sei ein reelles Intervall und es sei

eine stetige Funktion mit der Stammfunktion . Es sei eine Stammfunktion von und eine Stammfunktion von . Es seien . Bestimme eine Stammfunktion der Funktion




<< | Kurs:Mathematik für Anwender (Osnabrück 2011-2012)/Teil I | >>

PDF-Version dieses Arbeitsblattes (PDF englisch)

Zur Vorlesung (PDF)