Kurs:Vorkurs Mathematik (Osnabrück 2013)/Vorlesung 3

Aus Wikiversity
Zur Navigation springen Zur Suche springen



Die rationalen Zahlen

Definition  

Unter einer rationalen Zahl versteht man einen Ausdruck der Form

wobei und sind, und wobei zwei Ausdrücke und genau dann als gleich betrachtet werden, wenn (in ) gilt. Die Menge aller rationalen Zahlen wird mit bezeichnet.

Einen Ausdruck nennt man Bruch, wobei der Zähler und der Nenner des Bruches heißt. Eine rationale Zahl wird durch verschiedene Brüche beschrieben, beispielsweise ist . Man sagt auch, dass diese beiden Brüche gleichwertig sind. Für die rationale Zahl schreibt man einfach . In diesem Sinne sind ganze Zahlen insbesondere auch rationale Zahlen. Es gelten die folgenden Identitäten (dabei seien , ansonsten seien alle beliebig).

Die Addition und die Multiplikation auf rationalen Zahlen wird folgendermaßen festgelegt.

Man addiert also zwei rationale Zahlen, indem man die Nenner gleichnamig macht. Diese Operationen sind wohldefiniert und wieder assoziativ, kommutativ und es gilt das Distributivgesetz. Diese Eigenschaften kann man auf die entsprechenden Eigenschaften der ganzen Zahlen zurückführen, siehe Aufgabe 3.6.

Die hat wieder die Eigenschaft

und die hat wieder die Eigenschaft

Ferner gibt es wieder zu einer rationalen Zahl die negative Zahl

Sie besitzt die charakteristische Eigenschaft

Zu einer rationalen Zahl mit (also wenn Zähler und Nenner von verschieden sind) ist auch der umgedrehte Bruch eine rationale Zahl, und es gilt

Man nennt die inverse rationale Zahl zu .

Man kann die rationalen Zahlen auf der Zahlengeraden platzieren (die ganzen Zahlen seien dort schon platziert). Die rationale Zahl mit findet man so: Man unterteilt die Strecke von nach in gleichlange Teilstrecken. Die Zahl ist dann die rechte Grenze des (von links) ersten Teilintervalls. Insbesondere ist die Länge des Intervalls, dass -fach nebeneinander gelegt die Einheitsstrecke (oder das Einheitsintervall) ergibt.[1]

Als Punkte auf der Zahlengeraden lassen sich rationale Zahlen ihrer Größe nach vergleichen. Dabei gilt für und mit und die Beziehung

genau dann, wenn in die Beziehung

gilt. Um dies von der Zahlengerade her einzusehen, bringt man die beiden rationalen Zahlen auf den Hauptnenner, d.h. man vergleicht und . Die Größerbeziehung hängt dann, wegen positiv, allein von den beiden Zählern ab.



Die reellen Zahlen
Real number line.svg

Wir werden nun die reellen Zahlen besprechen, die wir uns durch alle Punkte der Zahlengeraden vorstellen. Diese Vorstellung ist keineswegs unproblematisch, sie ist aber intuitiv sehr wertvoll. Allerdings ist die Intuition in der Mathematik kein Beweismittel. Ferner wird die Intuition häufig überschätzt und mit Gewohnheit verwechselt. Haben Sie eine sichere intuitive Vorstellung zur Multiplikation auf der Zahlengeraden?

Unsere Vorgehensweise ist daher, grundlegende Eigenschaften der reellen Zahlen ein für allemal zu formulieren und dann alle weiteren Eigenschaften aus diesen Grundeigenschaften abzuleiten. Diese grundlegenden Eigenschaften decken sich mit unserer intuitiven Vorstellung einer kontinuierlichen Zahlengeraden und mit unserer Rechenerfahrung mit reellen Zahlen.

Grundlegende Eigenschaften von mathematischen Strukuren werden als Axiome bezeichnet. In der Mathematik werden sämtliche Eigenschaften aus den Axiomen logisch abgeleitet. Die Axiome für die reellen Zahlen gliedern sich in algebraische Axiome, Anordnungsaxiome und das Vollständigkeitsaxiom. Unter algebraischen Eigenschaften versteht man solche Eigenschaften, die sich auf die Rechenoperationen, also die Addition, die Subtraktion, die Multiplikation und die Division, beziehen. Diese Operationen ordnen zwei reellen Zahlen eine weitere reelle Zahl zu, man spricht auch von Verknüpfungen. Es genügt, nur Gesetzmäßigkeiten für die Addition und die Multiplikation aufzulisten, Subtraktion und Division ergeben sich als abgeleitete Operationen. Die Existenz der Addition und der Multiplikation ist Teil der Axiome.


Proposition

Die Addition und die Multiplikation auf den reellen Zahlen (mit den Elementen ) erfüllen die folgenden Eigenschaften (bzw. Axiome).

  1. Axiome der Addition
    1. Assoziativgesetz: Für alle gilt: .
    2. Kommutativgesetz: Für alle gilt .
    3. ist das neutrale Element der Addition, d.h. für alle ist .
    4. Existenz des Negativen: Zu jedem gibt es ein Element mit .
  2. Axiome der Multiplikation
    1. Assoziativgesetz: Für alle gilt: .
    2. Kommutativgesetz: Für alle gilt .
    3. ist das neutrale Element der Multiplikation, d.h. für alle ist .
    4. Existenz des Inversen: Zu jedem mit gibt es ein Element mit .
  3. Distributivgesetz: Für alle gilt .

Dass all diese Axiome für die reellen Zahlen (und die rationalen Zahlen) mit den natürlichen Verknüpfungen gelten, ist aus der Schule vertraut.

Zur Vereinfachung der Schreibweisen verwenden wir die Klammerkonvention, dass die Multiplikation stärker bindet als die Addition. Man kann daher statt schreiben. Zur weiteren Notationsvereinfachung wird das Produktzeichen häufig weggelassen. Die Elemente und werden als Nullelement und als Einselement bezeichnet. Es ist Teil der Axiomatik, dass sie verschieden sind.

Zu einer reellen Zahl nennt man das Element mit das Negative von . Es ist durch diese Eigenschaft eindeutig bestimmt und man bezeichnet es mit . Es ist , da wegen das Element gleich dem (eindeutig bestimmten) Negativen von ist.

Statt schreibt man abkürzend und spricht von der Differenz. Die Differenz ist also keine grundlegende Verknüpfung, sondern wird auf die Addition mit dem Negativen zurückgeführt.

Zu einer reellen Zahl , , nennt man das Element mit das Inverse von und bezeichnet es mit . Für , , schreibt man auch abkürzend

Die beiden linken Ausdrücke sind also Abkürzungen für den rechten Ausdruck.

Zu einer reellen Zahl und wird als das -fache Produkt von mit sich selbst definiert, und bei wird als interpretiert.



Anordnungseigenschaften der reellen Zahlen

Bekanntlich kann man die reellen Zahlen mit einer Geraden identifizieren. Auf der Zahlengeraden liegen von zwei Punkten einer weiter rechts als der andere, was bedeutet, dass sein Wert größer ist. Wir besprechen nun diese Anordnungseigenschaften der reellen Zahlen.


Axiom  

Die reellen Zahlen erfüllen die folgenden Anordnungsaxiome.

  1. Für je zwei reelle Zahlen ist entweder oder oder .
  2. Aus und folgt (für beliebige ).
  3. Aus folgt (für beliebige ).
  4. Aus und folgt (für beliebige ).
  5. Für jede reelle Zahl gibt es eine natürliche Zahl mit .

Die ersten beiden Eigenschaften drücken aus, dass auf eine totale (oder lineare) Ordnung vorliegt; die in (2) beschriebene Eigenschaft heißt Transitivität. Die fünfte Eigenschaft heißt Archimedes-Axiom.

Statt schreibt man auch . Die Schreibweise bedeutet und . Eine wichtige Beziehung in ist, dass äquivalent[2] zu ist. Diese Äquivalenz ergibt sich durch beidseitiges Addieren von bzw. aus dem dritten Axiom. Eine reelle Zahl nennt man positiv, wenn ist, und negativ, wenn ist. Die ist demnach weder positiv noch negativ, und jedes Element ist entweder positiv oder negativ oder null. Die Elemente  mit nennt man dann einfach nichtnegativ und die Elemente  mit nichtpositiv. Für die entsprechenden Teilmengen der reellen Zahlen schreibt man

oder Ähnliches.



Lemma

Für reelle Zahlen gelten die folgenden Eigenschaften.

  1. .
  2. Aus und folgt .
  3. Aus und folgt .
  4. Es ist .
  5. Aus folgt für alle .
  6. Aus folgt für ganze Zahlen .
  7. Aus folgt .
  8. Aus folgt .

Beweis

Siehe Aufgabe 3.13.


Das folgende Lemma fasst Folgerungen aus dem Archimedes-Axiom zusammen.



Lemma  

  1. Zu mit gibt es ein mit .
  2. Zu gibt es eine natürliche Zahl mit .
  3. Zu zwei reellen Zahlen gibt es auch eine rationale Zahl (mit ) mit

Beweis  

(1). Wir betrachten . Aufgrund des Archimedes-Axioms gibt es ein mit . Da positiv ist, gilt nach Lemma 3.4  (2) auch .
(2). Es ist eine wohldefinierte, nach Lemma 3.4  (7) positive reelle Zahl. Aufgrund des Archimedes-Axioms gibt es eine natürliche Zahl mit . Dies ist nach Lemma 3.4  (8) äquivalent zu


(3). Wegen ist und daher gibt es nach (2) ein mit . Wegen (1) gibt es auch ein mit . Wegen der Archimedes-Eigenschaft gibt es ein mit . Nach Lemma 3.4  (3) gilt daher . Daher gibt es auch ein derart, dass

ist. Damit ist einerseits und andererseits

wie gewünscht.



Definition  

Für reelle Zahlen , , nennt man

    • das abgeschlossene Intervall.
    • das offene Intervall.
    • das linksseitig offene Intervall.
    • das rechtsseitig offene Intervall.

    Für das offene Intervall wird häufig auch geschrieben. Die Zahlen und heißen die Grenzen des Intervalls (oder Randpunkte des Intervalls), genauer spricht man von unterer und oberer Grenze. Die Bezeichnung linksseitig und rechtsseitig bei den beiden letzten Intervallen (die man auch als halboffen bezeichnet) rühren von der üblichen Repräsentierung der reellen Zahlen als Zahlengerade her, bei der rechts die positiven Zahlen stehen. Manchmal werden auch Schreibweisen wie verwendet. Dies bedeutet nicht, dass es in ein Element gibt, sondern ist lediglich eine kurze Schreibweise für .

    Für die reellen Zahlen bilden die ganzzahligen Intervalle , , aufgrund des Archimedes-Axioms eine disjunkte Überdeckung. Deshalb ist die folgende Definition sinnvoll.

    Floor function.svg

    Es ist also die größte ganze Zahl, die kleiner oder gleich ist.


    Definition  

    Zu einer reellen Zahl ist die Gaußklammer durch

    definiert.



    Der Betrag
    Absolute value.svg

    Definition  

    Für eine reelle Zahl ist der Betrag folgendermaßen definiert.

    Der Betrag ist also nie negativ und hat nur bei den Wert , sonst ist er immer positiv. Die Abbildung

    nennt man auch Betragsfunktion. Der Funktionsgraph setzt sich aus zwei Halbgeraden zusammen; eine solche Funktion nennt man auch stückweise linear.



    Lemma

    Die reelle Betragsfunktion

    erfüllt folgende Eigenschaften (dabei seien beliebige reelle Zahlen).

    1. .
    2. genau dann, wenn ist.
    3. genau dann, wenn oder ist.
    4. .
    5. .
    6. Für ist .
    7. Es ist (Dreiecksungleichung für den Betrag).

    Beweis

    Siehe Aufgabe 3.18.




    Fußnoten
    1. Die Frage, wie man diese Unterteilung elementar durchführt, besprechen wir hier nicht.
    2. Man sagt, dass zwei Aussagen und zueinander äquivalent sind, wenn die Aussage genau dann wahr ist, wenn die Aussage wahr ist. Dabei sind die beiden Aussagen häufig abhängig von gewissen Variablenbelegungen, und die Äquivalenz bedeutet dann, dass genau dann wahr ist, wenn wahr ist.


    << | Kurs:Vorkurs Mathematik (Osnabrück 2013) | >>

    PDF-Version dieser Vorlesung

    Arbeitsblatt zur Vorlesung (PDF)