Diffeomorphismen/Lokale Umkehrbarkeit/Standardkoordinaten/Textabschnitt

Aus Wikiversity

Der Satz über die lokale Umkehrbarkeit gibt Anlass zu folgender Definition.


Definition  

Es seien und endlichdimensionale reelle Vektorräume und und offene Teilmengen. Eine Abbildung

heißt -Diffeomorphismus, wenn bijektiv und -mal stetig differenzierbar ist, und wenn die Umkehrabbildung

ebenfalls -mal stetig differenzierbar ist.

Der Satz über die lokale Umkehrbarkeit besagt also, dass eine stetig differenzierbare Abbildung mit invertierbarem totalen Differential lokal (!) ein -Diffeomorphismus ist (es gibt auch -Versionen von diesem Satz). Zwei offene Mengen und heißen -diffeomorph, wenn es einen -Diffeomorphismus zwischen ihnen gibt. Hier werden wir uns auf -Diffeomorphismen beschränken und prominente Beispiele besprechen.

Wir haben schon für die komplexen Zahlen Polarkoordinaten verwendet, siehe Fakt. Hier besprechen wir Polarkoordinaten in Hinblick auf lokale Umkehrbarkeit.


Beispiel  

Die Abbildung

heißt Polarkoordinatenauswertung. Sie ordnet einem Radius und einem Winkel (wegen diesen Bedeutungen schränkt man den Definitionsbereich häufig ein) denjenigen Punkt der Ebene (in kartesischen Koordinaten) zu, zu dem man gelangt, wenn man in Richtung des Winkels (gemessen von der -Achse aus gegen den Uhrzeigersinn) die Strecke zurücklegt. Sie ist in jedem Punkt stetig differenzierbar mit der Jacobi-Matrix

Diese Abbildung ist nicht injektiv, da die Abbildung im zweiten Argument, also im Winkel , periodisch mit der Periode ist. Bei ist - unabhängig von - das Bild gleich . Ferner ist . Die Abbildung kann also nicht global invertierbar sein.

Die Determinante der Jacobi-Matrix ist

Bei liegt also nach Fakt ein bijektives totales Differential vor. Nach dem Satz über die lokale Umkehrabbildung gibt es zu jedem Punkt mit eine offene Umgebung und eine bijektive Abbildung

Bei kann man beispielsweise als offene Umgebung das offene Rechteck

mit und mit wählen. Das Bild davon, also , ist der Schnitt des (offenen) Kreisringes zu den Radien und und dem (offenen) Kreissektor, der durch die beiden Winkel und begrenzt ist.

Man kann diese Abbildung zu einer bijektiven Abbildung, und zwar zu einem Diffeomorphismus, auf großen offenen Mengen einschränken, beispielsweise zu

Die Bijektivität folgt dabei aus den grundlegenden Eigenschaften der trigonometrischen Funktionen, siehe insbesondere Fakt. Wenn man das offene Intervall durch das halboffene Intervall ersetzt, so bekommt man eine Bijektion zwischen und . Man kann aber nicht von einem Diffeomorphismus sprechen, da dies nur für offene Mengen definiert ist. Die Umkehrabbildung ist übrigens noch nicht einmal stetig.



Beispiel  

Eine räumliche Variante der Polarkoordinaten sind die Zylinderkoordinaten. Die zugehörige Abbildung wird durch

beschrieben. Für jedes feste werden als Polarkoordinaten ausgewertet und die Höhe wird einfach übernommen.



Beispiel  

Die Abbildung

(bzw. die Einschränkung davon auf Teilmengen wie ) nennt man Kugelkoordinatenauswertung. Diese Abbildung bildet die Kugelkoordinaten auf die zugehörigen kartesischen Koordinaten ab.

Die Bedeutung der Kugelkoordinaten sind folgendermaßen: ist der Abstand von zum Nullpunkt. Bei definieren die beiden Winkel und einen Punkt auf der Einheitskugel, und zwar bestimmt einen Punkt auf dem Einheitskreis in der -Ebene (auf dem Äquator) und bestimmt einen Punkt auf dem zugehörigen Halbkreis (der durch den Äquatorpunkt und Nord- und Südpol festgelegt ist), wobei der Winkel zum Nordpol gemessen wird. Für ( und) einen festen Winkel parametrisiert einen Breitenkreis, wobei den Äquator beschreibt. Bei einem festen Winkel hingegen parametrisiert den oben angesprochenen Halbkreis, einen Längenkreis. In der Geographie herrschen übrigens etwas andere Konventionen, man wählt den zweiten Winkel aus (statt und spricht man von nördlicher und südlicher Breite) und nimmt .

Die Jacobi-Matrix der Abbildung ist

und die Determinante davon ist

D.h. bei und ist das totale Differential invertierbar und daher liegt nach Fakt ein lokaler Diffeomorphismus vor. Die inhaltliche Interpretation der Abbildung zeigt, dass hier überhaupt ein Diffeomorphismus zwischen und vorliegt.