Endomorphismus/Minimalpolynom/Charakteristisches Polynom/Textabschnitt
Es sei ein endlichdimensionaler Vektorraum über einem Körper und es sei
eine lineare Abbildung.
Dann ist das charakteristische Polynom ein Vielfaches des Minimalpolynoms zu .
Insbesondere ist der Grad des Minimalpolynoms zu
durch die Dimension des Vektorraums beschränkt. Minimalpolynom und charakteristisches Polynom stimmen in verschiedener Hinsicht überein, beispielsweise besitzen sie die gleichen Nullstellen.
Es sei ein endlichdimensionaler Vektorraum über einem Körper und es sei
eine lineare Abbildung. Es sei ein Eigenvektor von zum Eigenwert und es sei ein Polynom.
Dann ist
Insbesondere ist ein Eigenvektor von zum Eigenwert . Der Vektor gehört genau dann zum Kern von , wenn eine Nullstelle von ist.
Es ist
Daher folgt alles daraus, dass die Zuordnung mit der Addition und der Skalarmultiplikation verträglich ist.
Es sei ein endlichdimensionaler Vektorraum über einem Körper und es sei
eine lineare Abbildung.
Dann besitzen das charakteristische Polynom und das Minimalpolynom die gleichen Nullstellen.
Dass die Nullstellen des Minimalpolynoms auch Nullstellen des charakteristischen Polynoms sind, folgt direkt aus Cayley-Hamilton.
Umgekehrt sei eine Nullstelle des charakteristischen Polynoms und sei ein Eigenvektor von zum Eigenwert , den es nach Fakt gibt. Das Minimalpolynom schreiben wir als
wobei nullstellenfrei sei. Dann ist
Wir wenden dies auf an. Nach Fakt bilden die Faktoren den Vektor auf bzw. auf ab. Insgesamt wird somit auf
abgebildet. Da die Gesamtabbildung die Nullabbildung und ist, muss ein sein.