Kommutativer Ring/Spektrum/Zariski-Topologie/Funktorialität/Textabschnitt
Es sei ein Ringhomomorphismus zwischen kommutativen Ringen.
Dann gelten folgende Aussagen.
- Die Zuordnung
ist (wohldefiniert und) stetig.
- Es ist für jedes Ideal .
- Für einen weiteren Ringhomomorphismus
gilt .
Die Abbildung ist nach Aufgabe wohldefiniert. Zur Stetigkeit ist die Aussage (2) zu zeigen. Wir argumentieren mit den abgeschlossenen Mengen. Für ein Primideal ist genau dann, wenn ist. Dies ist äquivalent zu und ebenso zu . (3) ist klar.
Die in der vorstehenden Aussage eingeführte stetige Abbildung heißt Spektrumsabbildung
(zu dem gegebenen Ringhomomorphismus).
Bei einem Unterring geht es einfach um die Zuordnung . In diesem Fall spricht man auch von „Runterschneiden“.
Es sei ein kommutativer Ring. Dann gelten folgende Aussagen.
- Zu einem Ideal
und der Restklassenabbildung
ist die Spektrumsabbildung
eine abgeschlossene Einbettung, deren Bild ist.
- Zu einem
multiplikativen System
ist die zur kanonischen Abbildung
gehörige Abbildung
injektiv, und das Bild besteht aus der Menge der Primideale von , die zu disjunkt sind.
- Zu
ist die zur kanonischen Abbildung
gehörige Abbildung
eine offene Einbettung, deren Bild gleich ist.
(1) folgt aus Aufgabe: Die Primideale in entsprechen über den Primidealen von , die enthalten. Die angegebene Abbildung ist also bijektiv und hat das beschriebene Bild. Zu einem Ideal und einem Primideal ist genau dann , wenn
gilt. Also ist das Bild von gleich und damit abgeschlossen.
Für (2) siehe
Aufgabe.
(3). Da für ein Primideal und ein Element
die Beziehung
genau dann gilt, wenn zum
multiplikativen System
disjunkt ist, folgt aus Teil (2), dass die Abbildung injektiv ist und dass ihr Bild gleich ist. Das gleiche Argument, angewendet auf
bzw.
zeigt, dass das Bild von
gleich und damit offen ist.
Es sei ein Ringhomomorphismus zwischen zwei kommutativen Ringen und es sei
die zugehörige Spektrumsabbildung.
Dann ist die Faser über einem Primideal gleich .
D.h. die Faser besteht aus allen Primidealen mit und mit .
Aufgrund von Fakt müssen wir nur die zweite Formulierung beweisen. Für ein Primideal gilt genau dann, wenn sowohl als auch gilt. Die erste Bedingung ist zu und die zweite Bedingung ist zu
äquivalent.
Insbesondere ist die Faser eines Spektrumsmorphismus über einem Punkt selbst wieder das Spektrum eines Ringes. Ein Spezialfall der vorstehenden Aussage ist, dass die Faser über einem maximalen Ideal gleich ist, da in diesem Fall aus
sofort
folgt und wegen der Maximalität Gleichheit gelten muss. Bei einem Integritätsbereich und dem Nullideal erübrigt es sich, das Erweiterungsideal zu betrachten, die Faser wird einfach durch beschrieben.
Es sei
ein Ringhomomorphismus zwischen kommutativen Ringen und es sei
die zugehörige Spektrumsabbildung.
Dann ist die Faser über einem Primideal genau dann leer, wenn .