Kommutativer Ring/Spektrum/Zariski-Topologie/Funktorialität/Textabschnitt

Aus Wikiversity


Proposition  

Es sei ein Ringhomomorphismus zwischen kommutativen Ringen.

Dann gelten folgende Aussagen.

  1. Die Zuordnung

    ist (wohldefiniert und) stetig.

  2. Es ist für jedes Ideal .
  3. Für einen weiteren Ringhomomorphismus

    gilt .

Beweis  

Die Abbildung ist nach Aufgabe wohldefiniert. Zur Stetigkeit ist die Aussage (2) zu zeigen. Wir argumentieren mit den abgeschlossenen Mengen. Für ein Primideal ist genau dann, wenn ist. Dies ist äquivalent zu und ebenso zu . (3) ist klar.


Die in der vorstehenden Aussage eingeführte stetige Abbildung heißt Spektrumsabbildung (zu dem gegebenen Ringhomomorphismus). Bei einem Unterring geht es einfach um die Zuordnung . In diesem Fall spricht man auch von „Runterschneiden“.



Proposition  

Es sei ein kommutativer Ring. Dann gelten folgende Aussagen.

  1. Zu einem Ideal und der Restklassenabbildung

    ist die Spektrumsabbildung

    eine abgeschlossene Einbettung, deren Bild ist.

  2. Zu einem multiplikativen System ist die zur kanonischen Abbildung

    gehörige Abbildung

    injektiv, und das Bild besteht aus der Menge der Primideale von , die zu disjunkt sind.

  3. Zu ist die zur kanonischen Abbildung

    gehörige Abbildung

    eine offene Einbettung, deren Bild gleich ist.

Beweis  

(1) folgt aus Aufgabe: Die Primideale in entsprechen über den Primidealen von , die enthalten. Die angegebene Abbildung ist also bijektiv und hat das beschriebene Bild. Zu einem Ideal und einem Primideal ist genau dann , wenn

gilt. Also ist das Bild von gleich und damit abgeschlossen.
Für (2) siehe Aufgabe.
(3). Da für ein Primideal und ein Element die Beziehung genau dann gilt, wenn zum multiplikativen System disjunkt ist, folgt aus Teil (2), dass die Abbildung injektiv ist und dass ihr Bild gleich ist. Das gleiche Argument, angewendet auf bzw. zeigt, dass das Bild von gleich und damit offen ist.



Lemma  

Es sei ein Ringhomomorphismus zwischen zwei kommutativen Ringen und es sei

die zugehörige Spektrumsabbildung.

Dann ist die Faser über einem Primideal gleich .

D.h. die Faser besteht aus allen Primidealen mit und mit .

Beweis  

Aufgrund von Fakt müssen wir nur die zweite Formulierung beweisen. Für ein Primideal gilt genau dann, wenn sowohl als auch gilt. Die erste Bedingung ist zu und die zweite Bedingung ist zu

äquivalent.


Insbesondere ist die Faser eines Spektrumsmorphismus über einem Punkt selbst wieder das Spektrum eines Ringes. Ein Spezialfall der vorstehenden Aussage ist, dass die Faser über einem maximalen Ideal gleich ist, da in diesem Fall aus sofort folgt und wegen der Maximalität Gleichheit gelten muss. Bei einem Integritätsbereich und dem Nullideal erübrigt es sich, das Erweiterungsideal zu betrachten, die Faser wird einfach durch beschrieben.



Korollar  

Es sei

ein Ringhomomorphismus zwischen kommutativen Ringen und es sei

die zugehörige Spektrumsabbildung.

Dann ist die Faser über einem Primideal genau dann leer, wenn .

Beweis  

Dies folgt aus Fakt und Fakt  (6).