Zum Inhalt springen

Kurs:Algebraische Zahlentheorie (Osnabrück 2020-2021)/Arbeitsblatt 26/kontrolle

Aus Wikiversity



Aufgaben

Es sei ein Zahlbereich und ein Ideal in . Zeige, dass es ein Element mit der Eigenschaft gibt, dass für alle maximale Ideale gilt:



Es sei ein Zahlbereich und ein Ideal in . Zeige, dass es eine natürliche Zahl derart gibt, dass das inverse Ideal zu äquivalent ist.



Es sei ein Zahlbereich. Zeige, dass es ein , , mit der Eigenschaft gibt, dass die Nenneraufnahme faktoriell ist.



Es sei das Spektrum eines Zahlbereiches. Zeige, dass jede offene Menge von von der Form mit einem ist.



Zeige mit Korollar 26.11, dass der Ring der Gaußschen Zahlen faktoriell ist.



Es sei der quadratische Zahlbereich zu . Zeige mittels Korollar 26.11, dass faktoriell ist.



Es sei der quadratische Zahlbereich zu . Zeige mittels Korollar 26.11, dass faktoriell ist.



Es sei der quadratische Zahlbereich zu . Zeige mittels Korollar 26.11, dass faktoriell ist.



Es sei quadratfrei und sei der zugehörige quadratische Zahlbereich. Ferner sei ein Vielfaches von und . Zeige: ist nicht faktoriell.

Tipp: Siehe Aufgabe 10.2.


Zeige, dass der siebte Kreisteilungsring faktoriell ist.



Zeige, dass der achte Kreisteilungsring faktoriell ist.

Bemerkung: Der Betrag der Diskriminante von ist .