Kurs:Mathematik für Anwender (Osnabrück 2011-2012)/Teil II/Arbeitsblatt 40
- Aufwärmaufgaben
Berechne das charakteristische Polynom zur Matrix
Es sei ein Körper und sei eine - Matrix über . Wie findet man die Determinante von im charakteristischen Polynom wieder?
Es sei ein Körper, ein - Vektorraum und
eine lineare Abbildung. Es sei ein Eigenwert von und ein Polynom. Zeige, dass ein Eigenwert von[2] ist.
Wir betrachten die lineare Abbildung
die bezüglich der Standardbasis durch die Matrix
beschrieben wird.
a) Bestimme das charakteristische Polynom und die Eigenwerte von .
b) Berechne zu jedem Eigenwert einen Eigenvektor.
c) Stelle die Matrix für bezüglich einer Basis aus Eigenvektoren auf.
Es sei
Berechne:
- die Eigenwerte von ;
- die zugehörigen Eigenräume;
- die geometrische und algebraische Vielfachheit der einzelnen Eigenwerte;
- eine Matrix derart, dass eine Diagonalmatrix ist.
Es sei ein Körper, und mit . Man gebe Beispiele für - Matrizen derart, dass ein Eigenwert zu ist mit der algebraischen Vielfachheit und der geometrischen Vielfachheit .
- Aufgaben zum Abgeben
Aufgabe (2 Punkte)
Berechne das charakteristische Polynom zur Matrix
Aufgabe (3 Punkte)
Aufgabe (4 Punkte)
Es sei
Berechne:
- die Eigenwerte von ;
- die zugehörigen Eigenräume;
- die geometrische und algebraische Vielfachheit der einzelnen Eigenwerte;
- eine Matrix derart, dass eine Diagonalmatrix ist.
Aufgabe (4 Punkte)
Bestimme für jedes die algebraischen und geometrischen Vielfachheiten für die Matrix
Aufgabe (4 Punkte)
Aufgabe (4 Punkte)
- Fußnoten
- ↑ Die Hauptschwierigkeit bei dieser Aufgabe ist vermutlich zu erkennen, dass man hier wirklich was zeigen muss.
- ↑ Der Ausdruck bedeutet, dass man die lineare Abbildung in das Polynom einsetzt. Dabei muss man als , also als die -fache Hintereinanderschaltung von mit sich selbst, interpretieren, die Addition wird zur Addition von linearen Abbildungen, u.s.w.
<< | Kurs:Mathematik für Anwender (Osnabrück 2011-2012)/Teil II | >> |
---|