Lineare Abbildung/Diagonalisierbar/Eigentheorie/Textabschnitt

Aus Wikiversity

Die Einschränkung einer linearen Abbildung auf einen Eigenraum ist die Streckung um den zugehörigen Eigenwert, also eine besonders einfache lineare Abbildung. Viele Eigenwerte mit hochdimensionalen Eigenräumen korrespondieren zu strukturell einfachen linearen Abbildungen. Ein Extremfall liegt bei den sogenannten diagonalisierbaren Abbildungen vor.

Bei einer Diagonalmatrix

ist das charakteristische Polynom einfach gleich

Wenn die Zahl in den Diagonalelementen -mal vorkommt, so kommt auch der Linearfaktor mit dem Exponenten in der Faktorisierung des charakteristischen Polynoms vor. Dies gilt auch, wenn nur eine obere Dreiecksmatrix vorliegt. Anders aber als bei einer oberen Dreiecksmatrix kann man bei einer Diagonalmatrix sofort die Eigenräume angeben, siehe Beispiel, und zwar besteht der Eigenraum zu aus allen Linearkombinationen der Standardvektoren , für die gleich ist. Insbesondere ist die Dimension des Eigenraums gleich der Anzahl, wie oft als Diagonalelement auftritt. Bei einer Diagonalmatrix stimmen also algebraische und geometrische Vielfachheiten überein.


Definition  

Es sei ein Körper, ein -Vektorraum und

eine lineare Abbildung. Dann heißt diagonalisierbar, wenn eine Basis aus Eigenvektoren zu besitzt.



Satz  

Es sei ein Körper und es sei ein endlichdimensionaler -Vektorraum. Es sei

eine lineare Abbildung. Dann sind folgende Aussagen äquivalent.

  1. ist diagonalisierbar.
  2. Es gibt eine Basis von derart, dass die beschreibende Matrix eine Diagonalmatrix ist.
  3. Für jede beschreibende Matrix bezüglich einer Basis gibt es eine invertierbare Matrix derart, dass

    eine Diagonalmatrix ist.

Beweis  

Die Äquivalenz von (1) und (2) folgt aus der Definition, aus Beispiel und der Korrespondenz zwischen linearen Abbildungen und Matrizen. Die Äquivalenz von (2) und (3) folgt aus Fakt.



Korollar  

Es sei ein Körper und es sei ein endlichdimensionaler -Vektorraum. Es sei

eine lineare Abbildung, die verschiedene Eigenwerte besitze.

Dann ist diagonalisierbar.

Beweis  

Aufgrund von Fakt gibt es linear unabhängige Eigenvektoren. Diese bilden nach Fakt eine Basis.



Beispiel  

Wir schließen an Beispiel an. Es gibt die beiden Eigenvektoren und zu den verschiedenen Eigenwerten und , so dass die Abbildung nach Fakt diagonalisierbar ist. Bezüglich der Basis aus diesen Eigenvektoren wird die lineare Abbildung durch die Diagonalmatrix

beschrieben.

Die Übergangsmatrix von der Basis zur durch und gegebenen Standardbasis ist einfach

Die inverse Matrix dazu ist

Gemäß Fakt besteht die Beziehung