Varietät/Endliche Morphismen/Elliptische Kurve/Kurzübersicht/Textabschnitt

Aus Wikiversity


Definition  

Es seien und quasiprojektive Varietäten über einem algebraisch abgeschlossenen Körper und sei

ein Morphismus. Man nennt endlich, wenn es eine offene affine Überdeckung derart gibt, dass auch die Urbilder affin sind und die zugehörigen Ringhomomorphismen

endlich sind.

Zu einem endlichen Morphismus ist für jeden Punkt die Faser endlich. Bei einem endlichen surjektiven Morphismus zwischen irreduziblen Varietäten ist die zugehörige Erweiterung der Funktionenkörper eine endliche Körpererweiterung.


Beispiel  

Es sei die kubische Gleichung einer elliptischen Kurve in kurzer homogener Weierstraßform, also . Wir betrachten die Abbildung

Diese ist die Einschränkung des Morphismus (einer Projektion weg von einem Punkt)

und damit selbst ein Morphismus. Auf der affinen Gerade ist diese Abbildung mit und gleich

Dies ist eine endliche Abbildung, da

eine endliche Ringerweiterung mit der Basis ist. Auf der affinen Gerade ist diese Abbildung mit und gleich

Dies ist ebenfalls eine endliche Erweiterung mit einer Basis aus Elementen.

Wir betrachten nun die Abbildung

die auf die Einschränkung des Morphismus

sei und die darüberhinaus auf abbildet. Die Stetigkeit ist klar. Auf der affinen Gerade ist diese Abbildung mit und gleich

was der endlichen Ringerweiterung

mit der Basis entspricht. Oberhalb von betrachten wir nicht (die scheinbar natürlichere Definitionsmenge) , da dies nicht enthält, sondern . Der zugehörige Ring ist schwieriger zu beschreiben, aber auch endlich vom Grad .



Satz

Es seien und irreduzible projektive Kurven über einem algebraisch abgeschlossenen Körper und sei ein Morphismus.

Dann ist entweder konstant oder aber ein endlicher Morphismus.

Ein endlicher Morphismus

zwischen irreduziblen Kurven führt in natürlicher Weise zu einer endlichen Körpererweiterung der Funktionenkörper. Diese Erweiterung kann man durch die Quotientenkörper zu beliebigen offenen affinen Teilmengen erhalten. Über diese Beobachtung kann man viele Begrifflichkeiten aus der Körpertheorie in die Theorie der Kurven überführen, beispielsweise Grad und Separabilität. Es gilt sogar der folgende Zusammenhang.


Satz

Es sei ein algebraisch abgeschlossener Körper.

Dann gibt es eine Entsprechung zwischen den glatten projektiven Kurven über und den Körpern über vom Transzendenzgrad , wobei sich endliche Morphismen und endliche Körpererweiterungen entsprechen.


Lemma

Es sei eine glatte irreduzible Kurve über einem algebraisch abgeschlossenen Körper und sei der Funktionenkörper von .

Dann definiert jede rationale Funktion in natürlicher Weise einen Morphismus

in die projektive Gerade .