Implizite Abbildung/R/Bemerkungen und Beispiele/Tangentialraum/Textabschnitt

Aus Wikiversity

Bemerkung  

Den Satz über implizite Abbildungen kann man auch so formulieren: Es seien und endlichdimensionale reelle Vektorräume, offen und es sei eine stetig differenzierbare Abbildung. Es sei ein Punkt, in dem das totale Differential surjektiv sei, und es sei eine direkte Summenzerlegung von in Untervektorräume und (mit ) derart, dass und surjektiv (und damit bijektiv ist) ist (dadurch ist , aber nicht eindeutig festgelegt). Dann gibt es offene Mengen und mit und eine stetig differenzierbare Abbildung

derart, dass der Graph von , also

mit der Faser über , geschnitten mit , also

übereinstimmt. Sind auf und jeweils Basen fixiert mit Koordinaten bzw. ( und seien die Dimensionen von und ), so wird lokal die Faser durch den Graphen von Funktionen in den Variablen gegeben. Die Faser ist dann nach den Variablen „aufgelöst“, d.h. diese Koordinaten lassen sich unter der impliziten Bedingung, dass die Punkte zur Faser gehören sollen, explizit durch die anderen, frei wählbaren Koordinaten ausdrücken.



Definition  

Es seien und endlichdimensionale reelle Vektorräume, es sei offen und sei

eine stetig differenzierbare Abbildung. Es sei ein Punkt, in dem das totale Differential surjektiv sei, und sei die Faser von durch . Dann nennt man

den Tangentialraum an die Faser in .

Häufig wird auch der an angelegte affine Raum

als Tangentialraum bezeichnet. In diesem Sinne ist der Tangentialraum kein Untervektorraum von , da er nicht durch den Nullpunkt verlaufen muss, er ist aber die Verschiebung eines Untervektorraums. Solche Räume nennt man affin-lineare Unterräume. Sie besitzen eine sinnvoll definierte Dimension, nämlich die Dimension des zugehörigen Vektorraumes. Der Tangentialraum an einem regulären Punkt zu einer Abbildung besitzt die Dimension . Der Satz über implizite Abbildungen besagt, dass eine offene Teilmenge des Tangentialraumes an sich bijektiv und differenzierbar auf eine offene Umgebung von auf der Faser abbilden lässt. Der Tangentialraum ist also eine lineare Approximation der Faser.


Beispiel  

Wir betrachten die differenzierbare Funktion

Die Jacobi-Matrix dieser Funktion ist

so dass die Funktion in jedem Punkt regulär ist und der Satz über implizite Abbildungen anwendbar ist. In diesem Fall kann man die Fasern auch direkt bestimmen. Die Bedingung

mit führt auf , so dass die Fasern der Abbildung die punktierten Geraden (d.h. ein Punkt ist rausgenommen) durch den Nullpunkt sind (außer der -Achse, auf der die Abbildung nicht definiert ist). Damit hat man explizit eine Auflösung der Faser nach gegeben. Dass die Fasern unter dieser Divisionsabbildung (punktierte) Geraden sind ist ein Ausdruck davon, dass man Brüche erweitern kann, ohne ihren Wert zu ändern.

Der Tangentialraum in wird nach der Definition durch den Kern der Jacobi-Matrix gegeben, und dieser wird durch den Vektor selbst aufgespannt. Der Tangentialraum an ist hier also die Gerade, die durch und den Nullpunkt definiert ist, und stimmt (bis auf den Nullpunkt) mit der Faser überein.



Beispiel  

Die Fasern der Abbildung für (rot) und (grün).

Wir betrachten die Abbildung

und knüpfen an Beispiel an. Der einzige kritische Punkt ist , ansonsten ist die Abbildung in jedem Punkt regulär und daher lassen sich lokal die Fasern als Graphen beschreiben. Die Faser über besteht aus der durch gegebenen Geraden und der durch gegebenen Halbgeraden, die sich im kritischen Punkt senkrecht schneiden. Ansonsten sind die Fasern durch die Gleichung

mit einem , , bestimmt (für nichtpositives sind die Fasern leer). Wir schreiben diese Bedingung als und daher als

Wegen kann man dies zu auflösen und wegen zu

Die Faser besteht jeweils aus zwei Komponenten, die bzw. entsprechen.