Kompakte riemannsche Fläche/Geschlecht/Einführung/Textabschnitt

Aus Wikiversity


Definition  

Zu einer kompakten zusammenhängenden riemannschen Fläche nennt man das Geschlecht von .

Das Geschlecht ist die wichtigste Invariante einer kompakten riemannschen Fläche. Genauer spricht man vom kohomologischen Geschlecht in Abgrenzung zu den Konzepten differentielles Geschlecht, topologisches Geschlecht und anderen Konzepten. Es ist ein wichtiges Ziel zu zeigen, dass die verschiedenen Konzepte zueinander äquivalent sind.


Lemma  

Die projektive Gerade

besitzt das Geschlecht .

Beweis  

Bei der affinen Standardüberdeckung

mit und ist

Wegen Fakt und der entsprechenden Aussage für können wir Fakt heranziehen. Eine erste Kohomologieklasse zur Strukturgarbe wird somit durch eine holomorphe Funktion auf repräsentiert. Die Theorie der Laurent-Entwicklung auf einer punktierten Kreisscheibe sichert eine Darstellung

wobei

den Nebenteil und

den Hauptteil bezeichnet. Dabei ist eine holomorphe Funktion auf . Mit ist die Funktion

holomorph fortsetzbar nach

(also für ) mit dem Wert . Somit ist die Differenz von auf bzw. auf definierten holomorphen Funktionen, was bedeutet, dass die Kohomologieklassse trivial ist.



Lemma  

Eine kompakte zusammenhängende riemannsche Fläche mit dem Geschlecht

ist biholomorph zur projektiven Geraden .

Beweis  

Nach dem Beweis zu Fakt gibt es eine meromorphe Funktion auf , die außerhalb eines gewählten Punktes holomorph ist und dessen Polordnung in gleich ist. Diese meromorphe Funktion definiert eine endliche holomorphe Abbildung nach (siehe auch Fakt) der Blätterzahl . Es liegt also eine bijektive Abbildung und damit nach Fakt auch eine biholomorphe Abbildung vor.



Beispiel  

Aus Fakt und Fakt folgt, dass sich jede Hauptteilverteilung auf der projektiven Geraden , also jede Vorgabe von Hauptteilen an endlich vielen Punkten durch eine meromorphe Funktion realisieren lässt, wobei nach Fakt diese Funktion sogar eine rationale Funktion ist. Diese kann man auch explizit angeben, wobei nur der Fall von einem Punkt zu betrachten ist, da sich der allgemeine Fall durch Addition der rationalen Funktionen ergibt. Besonderes übersichtlich ist die Situation, wenn der Hauptteil im unendlich fernen Punkt konzentriert ist, sagen wir in der Form mit dem lokalen Parameter . Diese Funktion ist direkt

d.h. auch, dass sich der Hauptteil sogar mit einem Polynom auf dem Komplement realisieren lässt. Wegen der Homogenität der projektiven Räume gilt das dann für alle Punkte. Wenn der Hauptteil in einem Punkt konzentriert ist und durch repräsentiert ist, so kann man dies direkt als eine rationale Realisierung des Hauptteiles übernehmen, da die zu negativ nur in einen Pol haben. Wenn aber die Hauptverteilung durch eine rationale Funktion oder ein invertiertes Polynom gegeben ist, muss man vorsichtiger sein. Betrachten wir die Hauptverteilung, die im Nullpunkt konzentriert ist und dort durch repräsentiert wird. Die rationale Funktion ist keine Realisierung auf für diese Hauptteilverteilung, da sie auch in einen Pol besitzt. Zur rechnerischen Bestimmung einer realisierenden rationalen Funktion muss man mit der Partialbruchzerlegung arbeiten, siehe Fakt. Im vorliegenden Fall schreibt man

es ist dann also eine rationale Realisierung dieser Hauptteilverteilung (die beiden Funktionen und unterscheiden sich im Nullpunkt nur um die dort holomorphe bzw. polstellenfreie rationale Funktion , und bei der Realisierung einer Hauptteilverteilung kommt es nur darauf an).