Kurs:Analysis (Osnabrück 2013-2015)/Teil I/Arbeitsblatt 11/kontrolle

Aus Wikiversity
Zur Navigation springen Zur Suche springen



Übungsaufgaben

Aufgabe Referenznummer erstellen

Berechne im Polynomring das Produkt


Aufgabe Referenznummer erstellen

Berechne das Ergebnis, wenn man im Polynom

die Variable durch die komplexe Zahl ersetzt.


Aufgabe * Referenznummer erstellen

Es sei ein Körper und sei der Polynomring über . Es sei . Zeige, dass die Einsetzungsabbildung, also die Zuordnung

folgende Eigenschaften erfüllt (dabei seien ).

  1. .
  2. .
  3. .


Aufgabe * Referenznummer erstellen

Es sei ein Körper und sei der Polynomring über . Zeige, dass der Grad folgende Eigenschaften erfüllt.

  1. ,
  2. .


Aufgabe Referenznummer erstellen

Zeige, dass in einem Polynomring über einem Körper gilt: Wenn beide ungleich sind, so ist auch .


Aufgabe Referenznummer erstellen

Zeige, dass die Hintereinanderschaltung (also das Einsetzen eines Polynoms in ein weiteres) von zwei Polynomen wieder ein Polynom ist.


Aufgabe * Referenznummer erstellen

Es seien die beiden komplexen Polynome

gegeben. Berechne (es soll also in eingesetzt werden).


Aufgabe Referenznummer erstellen

Schreibe das Polynom

in der neuen Variablen .


Aufgabe Referenznummer erstellen

Führe in die Division mit Rest durch “ für die beiden Polynome und durch.


Aufgabe Referenznummer erstellen

Es sei ein Körper und sei der Polynomring über . Wie lautet das Ergebnis der Division mit Rest, wenn man ein Polynom durch teilt?


Aufgabe Referenznummer erstellen

Es sei ein Körper und seien zwei Polynome mit . Zeige, dass es ein und eine eindeutige Darstellung

mit Polynomen vom Grad gibt.


Aufgabe Aufgabe 10.12 ändern

Es sei ein Körper und sei der Polynomring über . Zeige, dass jedes Polynom eine Produktzerlegung

mit und einem nullstellenfreien Polynom besitzt, wobei die auftretenden verschiedenen Zahlen und die zugehörigen Exponenten bis auf die Reihenfolge eindeutig bestimmt sind.


Aufgabe * Aufgabe 11.13 ändern

Es sei ein Körper und es seien verschiedene Elemente und Elemente gegeben. Zeige, dass es ein eindeutiges Polynom vom Grad gibt derart, dass für alle ist.


Aufgabe * Referenznummer erstellen

Man bestimme sämtliche komplexen Nullstellen des Polynoms

und man gebe die Primfaktorzerlegung von diesem Polynom in und in an.


Aufgabe * Referenznummer erstellen

Zeige durch Induktion, dass es zu natürlichen Zahlen mit eindeutig bestimmte natürliche Zahlen mit und mit

gibt.


Aufgabe * Referenznummer erstellen

Zeige, dass es zu ganzen Zahlen mit eindeutig bestimmte ganze Zahlen mit und mit

gibt.


Aufgabe Referenznummer erstellen

Es sei der Polynomring über einem Körper . Zeige, dass die Menge

wobei zwei Brüche und genau dann als gleich gelten, wenn ist, mit einer geeigneten Addition und Multiplikation ein Körper ist.


Aufgabe Referenznummer erstellen

Zeige, dass die Hintereinanderschaltung von zwei rationalen Funktionen wieder rational ist.


Aufgabe Referenznummer erstellen

Berechne die Hintereinanderschaltungen und der beiden rationalen Funktionen


In einer der Aufgaben wird folgender Begriff verwendet.


Eine reelle Zahl heißt algebraisch oder algebraische Zahl, wenn es ein Polynom , , mit gibt. Andernfalls heißt sie transzendent.


Beispielsweise sind rationale Zahlen und Wurzeln aus rationalen Zahlen algebraisch, dagegen sind und transzendent (das sind schwierige Sätze).



Aufgaben zum Abgeben

Aufgabe (3 Punkte)Referenznummer erstellen

Berechne im Polynomring das Produkt


Aufgabe (4 Punkte)Referenznummer erstellen

Führe in die Division mit Rest durch “ für die beiden Polynome und durch.


Aufgabe (2 Punkte)Referenznummer erstellen

Beweise die Formel

für ungerade.


Aufgabe (3 Punkte)Aufgabe 11.23 ändern

Es sei ein angeordneter Körper und der Polynomring über . Sei

Zeige, dass die drei folgenden Eigenschaften besitzt

  1. Entweder ist oder oder .
  2. Aus folgt .
  3. Aus folgt .


Aufgabe (6 Punkte)Aufgabe 11.24 ändern

Es sei ein angeordneter Körper, der Polynomring und

der Körper der rationalen Funktionen über . Zeige unter Verwendung von Aufgabe 11.23, dass man zu einem angeordneten Körper machen kann, der nicht archimedisch angeordnet ist.


Aufgabe (3 Punkte)Referenznummer erstellen

Zeige, dass die Menge der Polynome in einer Variablen mit rationalen Koeffizienten abzählbar ist.


Aufgabe (3 Punkte)Referenznummer erstellen

Zeige, dass die Menge der reellen transzendenten Zahlen überabzählbar ist.


<< | Kurs:Analysis (Osnabrück 2013-2015)/Teil I | >>

PDF-Version dieses Arbeitsblattes

Zur Vorlesung (PDF)