Kurs:Mathematik für Anwender (Osnabrück 2011-2012)/Teil I/Arbeitsblatt 17/kontrolle

Aus Wikiversity
Zur Navigation springen Zur Suche springen



Aufwärmaufgaben

Aufgabe Referenznummer erstellen

Berechne die ersten fünf Glieder des Cauchy-Produkts der beiden konvergenten Reihen


Aufgabe Referenznummer erstellen

Man mache sich klar, dass die Partialsummen des Cauchy-Produkts von zwei Reihen nicht das Produkt der Partialsummen der beiden Reihen sind.


Aufgabe Referenznummer erstellen

Es seien und zwei absolut konvergente Potenzreihen in . Zeige, dass das Cauchy-Produkt der beiden Reihen durch

gegeben ist.


Aufgabe Referenznummer erstellen

Sei  , . Bestimme (in Abhängigkeit von ) die Summen der beiden Reihen


Aufgabe Referenznummer erstellen

Es sei

eine absolut konvergente Potenzreihe. Bestimme die Koeffizienten zu den Potenzen in der dritten Potenz


Aufgabe Referenznummer erstellen

Zeige, dass die durch die Exponentialreihe definierte reelle Funktion

nicht nach oben beschränkt ist und dass das Infimum (aber nicht das Minimum) der Bildmenge ist.[1]


Aufgabe Aufgabe 17.7 ändern

Zeige, dass für die Exponentialfunktionen

die folgenden Rechenregeln gelten (dabei seien und ).


Aufgabe Aufgabe 17.8 ändern

Zeige, dass die Logarithmen zur Basis die folgenden Rechenregeln erfüllen.

  1. Es ist und , das heißt der Logarithmus zur Basis b ist die Umkehrfunktion zur Exponentialfunktion zur Basis .
  2. Es gilt
  3. Es gilt für .
  4. Es gilt


Aufgabe Referenznummer erstellen

Eine Währungsgemeinschaft habe eine Inflation von jährlich . Nach welchem Zeitraum (in Jahren und Tagen) haben sich die Preise verdoppelt?


Aufgabe Aufgabe 17.10 ändern

Seien . Zeige




Aufgaben zum Abgeben

Aufgabe (3 Punkte)Referenznummer erstellen

Berechne die Koeffizienten der Potenzreihe , die das Cauchy-Produkt der geometrischen Reihe mit der Exponentialreihe ist.


Aufgabe (4 Punkte)Referenznummer erstellen

Es sei

eine absolut konvergente Potenzreihe. Bestimme die Koeffizienten zu den Potenzen in der vierten Potenz


Aufgabe (5 Punkte)Referenznummer erstellen

Für und sei

das Restglied der Exponentialreihe. Zeige, dass für die Restgliedabschätzung

gilt.


Aufgabe (3 Punkte)Referenznummer erstellen

Berechne von Hand die ersten vier Nachkommastellen im Zehnersystem von


Aufgabe (4 Punkte)Referenznummer erstellen

Zeige, dass die durch die Exponentialreihe definierte reelle Exponentialfunktion die Eigenschaft besitzt, dass für jedes die Folge

bestimmt divergent gegen ist.[2]


Aufgabe * (7 Punkte)Referenznummer erstellen

Es sei

eine stetige Funktion , die die Gleichung

für alle erfüllt. Zeige, dass eine Exponentialfunktion ist, d.h. dass es ein mit gibt.




Fußnoten
  1. Aus der Stetigkeit folgt daraus, dass das Bild der reellen Exponentialfunktion ist.
  2. Man sagt daher, dass die Exponentialfunktion schneller wächst als jede Polynomfunktion.



<< | Kurs:Mathematik für Anwender (Osnabrück 2011-2012)/Teil I | >>

PDF-Version dieses Arbeitsblattes (PDF englisch)

Zur Vorlesung (PDF)