Stetige Abbildungen/Metrischer und euklidischer Raum/Textabschnitt

Aus Wikiversity

Wir erinnern an die Definition der Supremumsnorm.

Es sei eine Menge und

eine Funktion. Dann nennt man

das Supremum (oder die Supremumsnorm) von . Es ist eine nichtnegative reelle Zahl oder .


Diese Definition kann man direkt verallgemeinern, wenn die Werte der Abbildungen in einem euklidischen Vektorraum liegen. Es sei also eine Menge und sei ein euklidischer Vektorraum. In dieser Situation definiert man zu einer Abbildung

und nennt dies das Supremum (oder die Supremumsnorm) von (falls das Supremum nicht existiert, ist dies als zu interpretieren).

Wir setzen ; dies ist ein (i.A. unendlichdimensionaler) reeller Vektorraum. Die Supremumsnorm erfüllt die folgenden Eigenschaften (die geeignet zu interpretieren sind, falls auftritt).

  1. Es ist für alle .
  2. Es ist genau dann, wenn ist.
  3. Für und gilt
  4. Für gilt

Wenn ein metrischer Raum ist, so betrachtet man

Dieser ist ein reeller Untervektorraum von . Wenn nichtleer, abgeschlossen und beschränkt ist, so ist nach Fakt das Supremum von , , gleich dem Maximum, d.h. es gibt ein derart, dass für alle gilt. Daher ist in diesem Fall das Supremum stets eine reelle Zahl, und stimmt mit dem Maximum überein. Man spricht daher auch von der Maximumsnorm.



Satz  

Es sei eine kompakte Teilmenge, es sei ein euklidischer Vektorraum und es sei der Vektorraum der stetigen Abbildungen von nach .

Dann ist , versehen mit der Maximumsnorm, ein vollständiger metrischer Raum.

Beweis  

Es sei

eine Cauchy-Folge von stetigen Abbildungen. Wir müssen zeigen, dass diese Folge gegen eine Grenzabbildung konvergiert, die ebenfalls stetig ist. Zu jedem gibt es ein derart, dass für die Beziehung

für alle } gilt. Daher ist für jedes die Folge eine Cauchy-Folge in und somit, wegen der Vollständigkeit von euklidischen Räumen, konvergent in . Wir nennen den Grenzwert dieser Folge , so dass sich insgesamt eine Grenzabbildung

ergibt, gegen die die Funktionenfolge punktweise konvergiert. Da eine Cauchy-Folge ist, gibt es zu jedem vorgegebenen stets ein derart, dass die Cauchy-Bedingung für alle gilt, konvergiert die Funktionenfolge sogar gleichmäßig gegen (und das bedeutet die Konvergenz in der Supremumsnorm). Aufgrund von Fakt ist daher stetig und daher ist .