Endliche Körper/Erweiterungen/Galoisgruppen/Textabschnitt

Aus Wikiversity

Zu jeder Primzahl und jedem Exponenten gibt es nach Fakt einen eindeutig bestimmten endlichen Körper mit Elementen.



Lemma  

Es sei ein endlicher Körper der Charakteristik .

Dann ist der Frobeniushomomorphismus

ein Automorphismus, dessen Fixkörper ist.

Beweis  

Der Frobeniushomomorphismus ist stets ein Ringhomomorphismus. Die Injektivität ergibt sich aus Fakt, und daraus ergibt sich die Surjektivität wegen der Endlichkeit aus Fakt. Wegen werden die Elemente aus auf sich selbst abgebildet. Daher gibt es Elemente in mit . Mehr kann es wegen Fakt nicht geben.



Satz  

Es sei eine Primzahl und , .

Dann ist die Körpererweiterung eine Galoiserweiterung mit einer zyklischen Galoisgruppe der Ordnung , die vom Frobeniushomomorphismus erzeugt wird.

Beweis  

Es sei

der Frobeniushomomorphismus, der nach Fakt ein -Automorphismus ist. Daher sind auch die Iterationen Automorphismen, und zwar gilt

Bei ist nach Fakt für alle , also ist . Für kann nicht die Identität sein, da dies sofort Fakt widersprechen würde. Also gibt es verschiedene Potenzen des Frobeniusautomorphismus. Nach Fakt kann es keine weiteren Automorphismen geben und die Körpererweiterung ist galoissch mit der vom Frobenius erzeugten Gruppe als Galoisgruppe.



Korollar  

Es sei eine Primzahl und . Es seien und endliche Körper mit bzw. Elementen.

Dann ist genau dann ein Unterkörper von , wenn ein Teiler von ist.

In diesem Fall ist eine Galoiserweiterung vom Grad mit einer zyklischen Galoisgruppe der Ordnung , die von der -ten Iteration des Frobenius erzeugt wird.

Beweis  

Sei . Wenn ein Unterkörper von ist, so ist ein -Vektorraum einer gewissen endlichen Dimension. Daher muss die Elementanzahl von eine Potenz von sein. Aus

ergibt sich sofort, dass ein Vielfaches von ist.

Es sei umgekehrt ein Teiler von . Die Frobeniusiteration auf erzeugt eine Untergruppe der nach Fakt zyklischen Galoisgruppe von . Die Ordnung von ist . Es sei der zugehörige Fixkörper. Dann besitzt die Körpererweiterung nach Fakt den Grad und somit besitzt den Grad . Daher besitzt gerade Elemente und ist daher wegen Fakt isomorph zu .