Galoistheorie/Kompositum/Textabschnitt

Aus Wikiversity
Zur Navigation springen Zur Suche springen

Wir betrachten eine wichtige Konstruktion, das sogenannte Kompositum.


Definition  

Es sei eine Körpererweiterung und seien zwei Zwischenkörper. Dann nennt man den von und erzeugten Unterkörper das Kompositum der beiden Körper (in ). Es wird mit bezeichnet.

Das Kompositum hängt vom Oberkörper ab. Wenn man von endlichen Körpererweiterungen und ausgeht, so sichert Aufgabe, dass es überhaupt einen gemeinsamen Oberkörper gibt.



Lemma  

Es sei eine endliche separable Körpererweiterung und sei eine weitere Körpererweiterung mit dem gemeinsamen Oberkörper , in dem das Kompositum gebildet sei.

Dann ist ebenfalls eine endliche separable Körpererweiterung.

Beweis  

Es sei separabel, und seien die zu gehörigen (separablen) Minimalpolynome. Dann ist und die Minimalpolynome der über sind in Teiler der und daher selbst separabel. Nach Fakt ist eine separable Körpererweiterung.




Lemma  

Es sei eine endliche normale Körpererweiterung und sei eine weitere Körpererweiterung mit dem gemeinsamen Oberkörper , in dem das Kompositum gebildet sei.

Dann ist ebenfalls eine normale Körpererweiterung.

Beweis  

Wir können schreiben, und wir wissen, dass es zugehörige Polynome mit gibt, die über zerfallen. Daher ist und dieselben Polynome, aufgefasst in , erfüllen die gleichen Eigenschaften. Aus Fakt  (3) ergibt sich die Normalität.


Aus diesen zwei Lemmata ergibt sich der folgende Satz, der für die Charakterisierung der auflösbaren Körpererweiterungen wichtig ist.



Satz  

Es sei eine endliche Galoiserweiterung und sei eine weitere Körpererweiterung mit dem gemeinsamen Oberkörper , in dem das Kompositum gebildet sei.

Dann ist ebenfalls eine endliche Galoiserweiterung, und für ihre Galoisgruppe gilt die natürliche Isomorphie

Beweis  

Die Erweiterung ist normal nach Fakt und separabel nach Fakt, also eine Galoiserweiterung aufgrund von Fakt.
Zur Berechnung der Galoisgruppe gehen wir von der Einschränkungsabbildung

aus, die wegen der Normalität von nach Fakt  (4) ein wohldefinierter Gruppenhomomorphismus ist. Es sei ein Automorphismus, dessen Bild unter diesem Homomorphismus trivial sei, also . Da auch gilt, ist auf dem Kompositum die Identität, also das neutrale Element. Daher ist nach dem Kernkriterium injektiv.
Das Bild von ist eine Untergruppe . Aufgrund der Galoiskorrespondenz gibt es einen Zwischenkörper , , mit , und zwar ist der Fixkörper von . Es liegt also insgesamt die Situation

vor. Wir behaupten . Für jedes ist , und daher ist auch . Also ist . Wenn ist, so bedeutet dies, dass für jedes die Gleichheit gilt. Dann ist aber nach Fakt, da eine Galoiserweiterung ist. Somit ist . Insgesamt ist also