Kurs:Körper- und Galoistheorie (Osnabrück 2011)/Arbeitsblatt 5

Aus Wikiversity
Zur Navigation springen Zur Suche springen



Aufwärmaufgaben

Aufgabe *

Seien und Gruppen und sei

ein Gruppenhomomorphismus. Zeige, dass das Urbild eines Normalteilers ein Normalteiler in ist.


Aufgabe

Zeige, dass der Durchschnitt von Normalteilern , , in einer Gruppe ein Normalteiler ist.


Aufgabe

Sei eine Gruppe und ein Element mit dem (nach Lemma 4.4) zugehörigen Gruppenhomomorphismus

Beschreibe die kanonische Faktorisierung von gemäß Satz 5.12.


In der folgenden Aufgabe wird das Zentrum einer Gruppe verwendet.

Sei eine Gruppe. Das Zentrum von ist die Teilmenge

Aufgabe

Sei eine Gruppe. Zeige, dass das Zentrum ein Normalteiler in ist. Man bringe das Zentrum in Zusammenhang mit dem Gruppenhomomorphismus

Was ist das Bild von diesem Homomorphismus, und was besagen die Homomorphiesätze in dieser Situation?


Aufgabe

Sei eine Menge und sei eine Partition von , d.h. jedes ist eine Teilmenge von und ist die disjunkte Vereinigung der . Zeige, dass die Produktgruppe

eine Untergruppe von ist.


Aufgabe

Sei und sei eine Permutation auf . Die zugehörige Permutationsmatrix ist dadurch gegeben, dass

ist und alle anderen Einträge sind. Zeige, dass

ist.


Aufgabe *

Man gebe eine Matrix der Ordnung an.


Aufgabe

Es sei die Menge der invertierbaren -Matrizen über einem Körper . Zeige, dass für zueinander konjugierte Matrizen und aus die folgenden Eigenschaften bzw. Invarianten übereinstimmen: Die Determinante, die Eigenwerte, die Dimension der Eigenräume zu einem Eigenwert, die Diagonalisierbarkeit, die Trigonalisierbarkeit.




Aufgaben zum Abgeben

Aufgabe (3 Punkte)

Sei . Zeige, dass die Gruppe der -ten Einheitswurzeln in und die Gruppe isomorph sind.


Aufgabe (2 Punkte)

Sei eine Gruppe. Betrachte die Relation auf , wobei bedeutet, dass es einen inneren Automorphismus mit gibt. Zeige, dass diese Relation eine Äquivalenzrelation ist.


Die Äquivalenzklassen zu dieser Äquivalenzrelation bekommen einen eigenen Namen:

Zu einer Gruppe nennt man die Äquivalenzklassen zur Äquivalenzrelation, bei der zwei Elemente als äquivalent (oder konjugiert) gelten, wenn sie durch einen inneren Automorphismus ineinander überführt werden können, die Konjugationsklassen.


Aufgabe (2 Punkte)

Es sei die Gruppe der bijektiven Abbildungen der Menge in sich selbst. Bestimme die Konjugationsklassen dieser Gruppe.


Aufgabe (2 Punkte)

Seien und Gruppen und sei

ein surjektiver Gruppenhomomorphismus. Zeige, dass das Bild eines Normalteilers ein Normalteiler in ist.


Aufgabe (2 Punkte)

Zeige, dass jede Untergruppe vom Index zwei in einer Gruppe ein Normalteiler in ist.


Aufgabe (5 Punkte)

Man gebe eine Matrix der Ordnung an.



<< | Kurs:Körper- und Galoistheorie (Osnabrück 2011) | >>

PDF-Version dieses Arbeitsblattes

Zur Vorlesung (PDF)